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INVERTIBLE COMPOSITION OPERATORS
ON L2(X)

RAJ KISHOR SINGH

Abstract. Let C^ be a composition operator on L2(X), where A is a o-finite

measure defined on the Borel subsets of a standard Borel space. In this paper

a necessary and sufficient condition for the invertibility of C¿ is given in

terms of invertibility of </>. Also all invertible composition operators on L (R)

induced by monotone continuous functions are characterised.

Introduction. Let (X, §,X) be a a-finite measure space, and let <#> be a

measurable transformation from X into itself. Let L2(X) denote the Hilbert

space of all square-integrable functions on X. Define a composition transfor-

mation C^ on L2(X) as

<V = /°<Í>    for every/G L2(X).

In case C^ is a bounded operator with the range in L2(X), we call it a

composition operator induced by <¡>. The Banach space of all bounded linear

operators will be denoted by «35. The purpose of this paper is to study the

invertible composition operators.

The invertible composition operators on 77 ̂  (of the unit disk) are studied by

Schwartz [5], where he proves that the invertibility of the inducing function on

the unit disk into itself is a necessary and sufficient condition for the

invertibility of the corresponding composition operator. This is true because

the inducing functions are analytic functions and hence they are nicely

behaved. In case of composition operators on L2(X) the above statement is not

completely true as is shown later by an example. However, a little more

addition to the hypothesis makes it go through both ways in case of L2(X).

2. An invertibility theorem.

Definition. Let (X, §, X) be a measure space. Let </> be a measurable

transformation on X into itself. Then 4> is said to be one-to-one if there exists

a measurable transformation uV on X into itself such that (\p ° <i>)(x) = x a.e.

<í> is said to be onto if there exists a measurable transformation co such that

(<í> ° w)(x) = x a.e. <¡> is said to be invertible if there is a measurable

transformation \p such that (4> ° tp)(x) = (>p ° <f>)(x) = x a.e. Such \p is called

the inverse of <f> and is denoted as <f>~'.

Definition. A standard Borel space X is a Borel subset of a complete

separable metric space T. The class S will consist of all the sets of the form

X Pi B, where B is a Borel subset of T.
_
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From now on in this section we shall assume that X is a standard Borel

space and A is a a-finite measure on S. Such kinds of spaces are plentiful and

they are mostly used in analysis.

Now suppose 4> is a measurable transformation from X (standard Borel

space) into itself such that C^ G <&. Then we have proved in [4] that <p is one-

to-one only if the range of C^, is dense in L2(A). We shall present in the

following theorem an analogous result interchanging <i> and C^.

Theorem 1. Let § be a measurable transformation on X into X such that

Q, G 9ô. Then C¿, is one-to-one implies that <p is onto.

Proof. Suppose C^ is a one-to-one composition operator. Then we need to

produce a measurable transformation to such that (<i> ° u)(x) = x a.e. By

Corollary 8.2 of [7], there exist two Borel sets Y and Z such that Y G X, Z

G <f>(X), \<¡>~~X(X\Z) = 0 and <#> is one-to-one on Y and maps Y onto Z. Since

C^ is one-to-one, X(X \Z ) = 0, otherwise the kernel of C^ will be nontrivial.

Define the function to as co = (<p/Y)~ . By Kuratowski's Theorem [2, p. 22] to

is a measurable transformation, and we have (<f> ° u)(x) = x a.e. This shows

0 is onto.
The converse of the above theorem is not true. We shall cite the following

example.

Example. Let X be the unit interval [0,1] with Lebesgue measure A. Let C

be the Cantor set and \p be the Cantor function. Let (j> be the function defined

by

<f>(x) = \x + ¿\p(x)    for every x G X.

The function <#> is monotone continuous with $'(•*) = j (<?>' denotes the

derivative of <f>). It does define a composition operator on L (0,1). If C

denotes the complement of C in X, then A(<i>(C')) = j» and also X(<j>(C)) = \.

The function X.,cy the characteristic function of <¡>(C) is in the kernel of C^

because

C<fX<f(C) = X<f(C) ° * = ^Wc) = xc = °-

Hence c^ is not one-to-one.

Now we shall prove the main theorem of this section.

Theorem 2. A composition operator C¿ on L2(X) is invertible if and only if § is

invertible and the inverse of (¡> induces a composition operator on L (A).

Proof. Suppose <i> is invertible with \p as its inverse. Suppose C^ G 9>. Then

^V^V = ^V°<¡> = I — Cf^, = C^C^,, where 7 denotes the identity operator.
Hence C^ is invertible with C^ as its two sided inverse.

Conversely, suppose C^ is invertible. Let to be as in the proof of Theorem 1,

i.e. co = (4>/Y) and (<¡> ° u)(x) = x a.e. Since Q, is onto, Cu is well defined,

and Cu = CqX . Now in order to complete the proof, we shall show that

(co ° <i>)(x) = x a.e. Clearly (co ° (p)(x) — x for every x G Y. We shall show

that X(X\Y) = 0. Suppose not. Then 0 < X(X\Y) < oo. If X(X\Y) < oo,

then the characteristic function of X\Y is in the kernel of Cu which is a

contradiction to the invertibility of C^. If A^XK) = oo, then we can choose
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a subset E of X\Y such that 0 < X(E) < oo and the characteristic function

of E will be in the kernel of Ca which is again a contradiction. Therefore

X(X\Y) = 0. Hence « is the inverse of (/>. This completes the proof of the

theorem.

Corollary. If C^ is invertible, then C^x = C^-¡.

Theorem 3. Let <¡> be a real valued monotone continuous function on the set of

real numbers R and let C^ be a bounded composition operator on L2(n), where ¡i

is the Lebesgue measure on the Borel subsets of R. Then C^ is invertible if and

only if<t>' (the derivative of<f>) is essentially bounded and <b is absolutely continuous

on the finite intervals.

Proof. Suppose C^ is invertible. Then by the theorem, <p is invertible and

C.-i is a bounded operator on L2(u). Hence the Lebesgue-Stieltjes measure

induced by <j> is absolutely continuous with respect to u, and therefore </> is

absolutely continuous on finite intervals and <j>'dn = d<j> [1, Theorem 19.53].

From this we get

WL = ||*/4tlL = llc^-,112 < oo.

Hence <f>' is essentially bounded.

On the other hand, if </>' is essentially bounded and <f> is absolutely

continuous on finite intervals, then for every continuous function / with the

compact support

llc,-/ll2=/|/lV^< lk>'U/H2-

This is enough to show that C,-i is bounded and hence C^ is invertible. This

proves the theorem.

Corollary. Let p: R —» R be a polynomial such that Cp is bounded. Then Cp

is invertible iff the degree of p is equal to 1.
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