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Abstract. The Stone-Cech compactification of a space X is described by

adjoining to X continuous images of the Stone-tech growths of a comple-

mentary pair of subspaces of X. The compactification of an example of

Potoczny from [P] is described in detail.

The Stone-Cech compactification of a completely regular space X is a

compact Hausdorff space ßX in which X is dense and C*-embedded, i.e. every

bounded real-valued mapping on X extends to ßX. Here we describe BX in

terms of the Stone-Cech compactification of one or more subspaces by

utilizing adjunctions and completely regular reflections. All spaces mentioned

will be presumed to be completely regular.

If A is a closed subspace of X and /maps A into Y, then the adjunction space

X Of Y is the quotient space of the topological sum X © Y obtained by

identifying each point of A with its image in Y. We modify this standard

definition by allowing A to be an arbitrary subspace of X and by requiring /

to be a C*-embedding of A into Y.

The completely regular reflection of an arbitrary space y is a completely

regular space pY which is a continuous image of Y and is such that any real-

valued mapping on Y factors uniquely through p Y. The underlying set of p Y

is obtained by identifying two points of Y if they are not separated by some

real-valued mapping on Y. The resulting set has the property that for each

real-valued mapping /on Y, a unique real-valued function p(f) can be defined

on pY that factors/through pY. The topology on p Y is taken to be the weakest

topology so that all of the functions pif) so obtained are continuous.

Lemma I. If A is a subspace of X and fis a C*-embedding of A into Y, then X

is C*-embedded in piX L)f Y).

Proof. The mappings required in the proof are illustrated in the diagram.

The mappings p, and p2 are the compositions of the quotient map onA"® f

with the embeddings of X and Y into X © Y and k is any real-valued mapping

on X. We show that both p2 and p|p2[A'] are embeddings. Since / is an

embedding, p2 is one-to-one. To show that p2 is open onto its range, it is
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sufficient to show that the image of a cozero-set of A1 is a cozero-set of p2[^]-

Since A is C*-embedded in Y, if k is any bounded, real-valued mapping on X,

k\A has an extension / to Y. It then follows from the construction of X U/ Y

that a mapping g exists so that g ° p2 = k. Hence, the image of the cozero-set

of k is the trace on P2M °f tne cozero-set of g, and p2 is not only an

embedding, but is additionally a C*-embedding.

Since any two points of p2[X] are separated by a mapping such as g, their

images in p(A Uy Y) are separated by pig) so that p is one-to-one onp2[A']. In

addition, p|/>2pf] ¡s seen t0 sena" cozero-sets to cozero-sets in exactly the same

manner as for p2. Since pig) ° p ° p2 = k, we have shown that X is C*-

embedded in piX UfY).    D
We will always take the embedding / in the lemma to be the embedding

t\a : A -» ftA. To shorten notation, we write iX\ßA) for X U^   ß,4.

Theorem 1. 7/ .4 w a closed subspace of X such that every noncompact closed

set ofX meets A, then ßX = piX\ßA).

Proof. From the lemma, X is C*-embedded in piX\ßA) and X is easily seen

to be dense in piX\ßA) since A is dense in ßA. We will show that piX\ßA) is

compact by showing that iX\ßA) is compact. Let % be an ultrafilter on

(A\ßA). If any closed subset belonging to % is contained in X\A, then the

hypothesis on A shows that % contains a compact set and therefore converges.

If no closed member of A is contained in X \A, then the family {(cl S ) n ßA :

S G %,} is a filter on ßA and therefore clusters to a point in ßA. Hence,

iX\ßA) is compact and therefore its continuous image piX\ßA) is also.    □

Example 1. The space ^ described in Exercise 51 of [G-J] is one interesting

example where Theorem 1 applies. Construction of ^ begins by obtaining a

maximal, infinite, almost disjoint family S of infinite subsets of the countable

discrete space N. A point is added to N for each F in S with neighborhoods

of the added point being required to contain all but finitely many points of E.

The set of added points is taken to be the closed subspace A in the theorem.

Since I/I I = c, \ßA\ = 22'. However, ^ is separable, so that  |/M>| = 2C.
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Hence, the formation of piX\ßA) must identify points. This is to be expected,

since ¥ fails to be normal, making it unlikely that the adjunction space

iX\ßA) is Hausdorff. Since the proof of Theorem 1 shows iX\ßA) to be

compact, we see that the operation of forming piX\ßA) is simply one of

identifying points to make the compactification Hausdorff.

The theorem also applies to the more complex space described by Burke in

[B]. That space is constructed along the lines of <fr, with a countable product

of two point discrete spaces replacing N.

The restriction on A limits the application of Theorem 1. By using Lemma

1 twice, a more general result is obtained.

Theorem 2. If A is any closed subspace ofX, ßX = PipiX\ßA)\ßiX\A)).

Proof. Applying Lemma 1 twice, we see that X is C*-embedded in p{X\ßA)

and that p(X\ßA) is in turn C*-embedded in p(p(X\ßA)\ß(X\A)). The density

of X follows easily from that of A in ßA and X\A in ßiX\A). To show

compactness, let % he an ultrafilter on (p(A'|/i/l)|/?(A'V4)). Since % contains

either pißA) or ßiX\A), %must converge. Hence, ipiX\ßA)\ßiX\A)) and its

continuous image p(piX\ßA)\ßiX\A)) are compact.    □

Example 2. To illustrate the theorem, we first consider R with A = [0, oo).

The first adjunction p(R|y8^4) adds the "right end" of ßR. ßiR\A) is a copy of

ßR, and in the formation of the second adjunction, the points of the right end

of ß(R\A) are all identified with 0.
Example 3. Using Theorem 2, the Stone-Cech compactification of the

example given by Potoczny can be described. Following the notation of [P],

let W = [X: X < w,} denote the set of countable ordinals and let T

= {(y,X): 0 < y < À < to,}. Define a topology on X = W U T as follows:

Points of T are isolated and V is a neighborhood of a point o oí W ii V

contains a and all but finitely many points of the set T0 = {(a, X): X > a}

U {(a,a): X < a}. It follows easily that X is Hausdorff, has a base of clopen

sets, is locally compact, and completely regular.

We describe ßX by examining the two adjunction steps indicated by

Theorem 2 where W is taken to be A. Since W is a discrete subspace of

cardinality N,, \ßW\ = 22"'. We will show that in the formation of p{X\ßW),

all of the points of the "growth" W* = ßW\W are identified. The following
key property of X was demonstrated in [P] to show that X is not even weakly

normal:

(a) If F is a countably infinite subset of W, E is an un uncountable subset

of W, and U and V are open subsets of X containing F and E, respectively,

then U n V # 0.
A uniform ultrafilter on an infinite set of cardinality n is an ultrafilter whose

every member also has cardinality tj. In [H], Hindman shows that such a set

admits 22" uniform ultrafilters. For a point p belonging to the growth of a

discrete space DletAp denote the corresponding free ultrafilter on D. We now

show that:

(b) If p is any point of W* and q is any point of W* corresponding to a

uniform ultrafilter, thenp and q are identified in piX\ßW): Since piX\ßW) is

Hausdorff, p and q must be identified if they fail to have disjoint neighbor-

hoods in iX\ßW). The traces on X of such a pair of neighborhoods must
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contain disjoint members P and Q of Ap and Aq, respectively, as subsets of W.

Let F be any countable subset of P and let E = Q. Then F and F satisfy the

conditions of (a), and thus are not contained in disjoint open subsets of X.

Hence, p and q cannot have disjoint neighborhoods in iX\ßW), and are

identified in piX\ßW).

Thus, the formation of piX\ßW) adds only a single point to X, call it oo.

Since the pre-image in iX\ßW) of a neighborhood U of oo must be a

neighborhood of every point of W*,U must contain all but finitely many points

of W together with a neighborhood in X of each point of W included. Hence,

U must also include all but finitely many points of T0 for all but finitely many

a's in W. Call such a subset of T doubly cofinite. The construction of ßX is

completed by adjoining ßT to piX\ßW) and taking the reflection. In order to

describe the identification of points which occurs in taking the reflection of

ipiX\ßW)\ßT), we first classify the free ultrafilters on T, and therefore the

points of T*, into three types. Let p belong to T* and let Ap be the

corresponding free ultrafilter on T. Then we classify Ap as follows:

Type I: Ap contains a member Z such that |Z f~l Ta\ < R0 for all a in W.

Such ultrafilters must exist since any ultrafilter which contains the set

{(a, a + 1): a < w,} is of this type.

Type II: Ap is not of Type I and Ap contains a member Z such that

|Z n Ta\ > N0 for only finitely many o in W.

Ultrafilters of this type must exist since any ultrafilter containing Ta for some

a has this property.

Type III: Ap is not of either Type I or II, i.e. for every Z in Ap,

|Z D 3^| > R0 for infinitely many a in W.

The existence of Type III ultrafilters follows from the following result found

in [H]:

Lemma 2. If an infinite collection & of subsets of the infinite discrete space D of

cardinality r¡ satisfies:

(1) \A\ = rifor all A in &, and

(2) \AX n A21 < -nfor Ax and A2 distinct members of &,

then there exists a uniform ultrafilter Ap on D such that for each Z in

Ap, \A G &: \Z n A\= 17}| = \&\.

Applying the lemma to the family & = [Ta : a < w,} shows the existence of

ultrafilters of Type III.

The description of ßX is completed by describing the identifications which

take place in forming pipiX\ßW)\ßT). From the proof of Theorem 2,

ip(X\ßW)\ßT) is compact, so that p is actually the quotient map which

identifies pairs of points which are not separated by open sets. If Ap is of Type

I, then a straightforward case-by-case argument shows thatp can be separated

from any other point of piX\ßW) or T* by disjoint neighborhoods, so that

such points are not identified with any other point.

If Ap is of Type II, then there is a member Z of Ap and a finite subset F of

W such that \Z n Ta\ > N0 only for o in F Thus, we can write Z as follows:

Z = (U{Z n T0: a G F)) U (Z\U{r,: a G F)).

The set Z\U{Ta: a G F) cannot belong to Ap since Ap is not of Type I.
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Hence U{Z n Ta: a G F) is in Ap. Therefore, Z n T„ belongs to A* for

some a0. Thus, p cannot be separated from a0. Since it is easily seen that p can

be separated from any other point, p is identified with a0 in püX\ßW)\ßT).

Finally, if Ap is of Type III, every member of Ap meets Ta in an infinite set

for infinitely many a in W. Hence, p cannot be separated from oo by disjoint

open sets. However, p can be separated from each a in W since for any Z in

Ap, the set Z\Ta must belong to Ap. Therefore, p is identified with oo.

To complete the description of ßX, it remains to describe the neighborhoods

of the Type I points and of oo. If Ap is of Type /, then Ap contains sets which

are clopen in piX\ßW) and can include only Type I points in their closures

in ßT. Hence, a basic neighborhood of p in ßX is identical with a basic

neighborhood of p in ßT. We have already seen that a neighborhood of oo in

piX\ßW) must contain all but finitely many points of W together with a

doubly cofinite subset of T. Since every Type III point is identified with, oo,

the pre-image in ipiX\ßW)\ßT) of any neighborhood of oo must include a

neighborhood of every Type III point. To relate Type III points to doubly

cofinite subsets of T, we make the following observation:

(c) If 5 is a subset of T, then every Type III point is contained in cLjr S if

and only if S is doubly cofinite: We prove the contrapositives. If cloT S fails

to contain a Type III point p, then T\S belongs to Ap and must have an

infinite intersection with infinitely many of the T/s. Hence, 5 is not doubly

cofinite. Conversely, if S fails to be doubly cofinite, then Ng = (T\S) D Ta is

infinite for all a belonging to an infinite index set /. By applying Lemma 2 to

the family [Na: a G I}, we obtain an ultrafilter onU{iV,:a 6/} which can

be extended to a Type III ultrafilter Ap on T. Since Ap contains T\S, p has a

/sT-neighborhood which misses S.

This leads to the following property.

(d) The point oo has a clopen neighborhood base in ßX: Let U he any closed

ySX-neighborhood of oo. Then the set F = W\int(í/) is finite. Put S

= iU\i\J{Ta: a G F))) D T. Then S is doubly cofinite, and clxS = S

U iW\F) is clopen in X and contained in U. Hence, clßXS — cXßXicXxS) is

a clopen subset of ßX, contains oo, and is a subset of U. Hence, oo has a

clopen base in ßX.

Since it is easy to see that every other point of ßX has a clopen

neighborhood base, we have shown that

(e) ßX is zero-dimensional, or equivalently, X is strongly zero-dimensional:

Here, by strongly zero-dimensional, we mean that disjoint zero-sets of X are

separated by clopen sets. Since this is precisely the class of spaces for which

the 2-compactification and the Stone-Cech compactification coincide, we have

ÇX = ßX. Finally, we describe the Hewitt-Nachbin realcompactification vX

oiX.

(f) vX = piX\ßW): The inclusion of oo in vX follows from the observations

that every Gs containing oo meets X and that vX consists of those points of

ßX which cannot be separated from X by Gs's. The exclusion of Type I points

follows from the fact that no realcompact space can be C-embedded and

dense in a large space. Since for each Type I point p, Ap includes a C-

embedded, discrete subspace of X, p cannot belong to vX.
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