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POLYNOMIAL PELL'S EQUATIONS

MELVYN B. NATHANSON

Abstract. The polynomial Pell's equation is P2 — (x1 + d)Q2 = 1, where

d is an integer and the solutions P, Q must be polynomials with integer

coefficients. It is proved that this equation has nonconstant solutions if and

only  if d = ±1, ±2,  and  in  these  cases  all  solutions are  determined.

Let d be an integer. We consider the polynomial Pell's equation

(1) P2 - (x2 + d)Q2 = 1

where P and Q are polynomials with integer coefficients. This equation always

has the trivial solutions P = ±1, Q = 0, and these are the only constant

solutions. In this note we prove that (1) has nontrivial solutions if and only if

d = ±\, ±2, and in these cases we determine all solutions. This answers a

question posed by S. Chowla.

Lower case letters (¥= x) denote integers, and upper case letters denote

polynomials with integer coefficients. The degree of F is denoted deg F.

Theorem 1. Let d & ±1, ±2. Then the polynomial Pell's equation P2

— (x2 + d)Q2 = 1 has no nontrivial solution.

Proof. The proof is by Fermât descent on deg P. Let \d\ > 3, and suppose

that (1) has nontrivial solutions. Choose a solution P, Q of (1) with deg P

minimal and deg P > 0. There are two cases. If d ¥= —c2, then x2 + d is

irreducible, and

(P - l)(P + 1) = P2 - 1 = (x2 + d)Q2.

It follows that x2 + d divides P - 1 or P + 1, say P - 1. Then P - 1 =

(x2 + D)PX and P + 1 = ix2 + d)Px + 2, and so

(2) Px((x2 + d)Px + 2) = Q2.

Since the greatest common divisor of Px and (x2 + d)Px + 2 is 1 or 2, it

follows from (2) that one of the following four cases must hold:

(i)(x2 + d)Px+2 = -P¡,Px = -Q2;

(ii) ix2 + d)Px + 2 = P¡, />, = Q\;

(iii) (x2 + d)Px + 2 = -2P¡, Px = -2Q\;
(iv) (x2 + d)Px +2 = 2P22,PX = 2Q\. Setting x = ^d in (i), (ii), (iii),

we find that (a + b\f::d)   = ±2 or (a + by/^d)   = -1 for some integers a,
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b. But for d # — c2, \d\ > 3, this is impossible. Hence, (iv) must hold.

Rewriting (iv), we obtain P\ - (x2 + d)Q\ = 1. But 2 deg P2 = 2 + deg Px

= deg P, and so 0 < deg P2 < deg P. This contradicts the minimality of

deg P. Therefore, (1) has no nontrivial solutions if \d\ > 3 and d ¥• —c2.

Suppose that d = -c2 and |e| > 2. Then P(0)2 + c2Q(0)2 = 1,

and so ß(0) = 0 and P(0) = ±1, say, P(0) = 1. Then P = 1 + xPx and ß

= xßi. Substituting into (1), we obtain

Px(xPx + 2) = x(x2 - c2)Q2.

Clearly, Px = xP2, and so

(3) P2(x2P2 + 2) = (x2-c2)Q2.

Suppose x ± c divides x P2 + 2. Setting x = +c, we obtain c2P2(Tc) + 2

= 0, and so c2 divides 2. This is impossible, since c2 > 4. Therefore, both

x + c and x — c divide P2, and P2 = (x2 — c2)P3. Substituting into (3), we

obtain

P3(x2(x2 - c2)P3 + 2) = Q2.

Again, the greatest common divisor of P3 and x2(x2 — c2)P3 + 2 is 1 or 2, and

the proof continues exactly as in the case \d\ > 3, d # -c .

Finally, let d = 0. If 1 = P2 - x2Q2 = (P - xQ)(P + xQ), then P - xQ
= P + xQ = ±1. Adding these equations gives the trivial solutions P = ±1,

Q = 0. This proves Theorem 1 in all cases.

Theorem 2. Let d = 1 or d = ±2. Define inductively two sequences of

polynomials {^}"=0 and {Qn}™=0 by P0 = 1, Q0 = 0, and, for n > 1,

Pn = ((2/d)x2 + \)Pn_x + (2/d)x(x2 + d)Qn_x,

Qn m (2/d)xPn_x + ((2/d)x2 + \)Qn_x.

Then P2 - (x2 + d)Q2 = 1 if and only if P = ±P„andQ = ±Q„for some n.

Proof. The proof uses a continued fraction recurrence. Let P and Q be

polynomials. We define polynomials <fr+(P) and $>+(Q) by

$+(P) = Qx2 + l)p + \x(x2 + d)Q,    $+(Q) = \xP + (jjx2 + l)e

and we define polynomials &~(P) and $~(Q) by

*-(P) = (jjx2 + \y - \x(x2 + d)Q,     *-(ß) - -\xP.+. içdx2 + l)ß.

One checks by direct computation that

(4) $+dy(/>) = $  0+(/>) = P,

(5) $+$-(ß) = 4>"<I>+(ß) = ß,

(0»+(P))2 - (x2 + d)($+Q)2 = («D-^))2 - (x2 + d)(4>-Q)2
(6)

= P2 - (x2 + d)Q2.
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Since P02 - (x2 + d)Ql - 1, and Pn = <&+(P„-i) and g„ = $+(Ö„_i) for n
> 1, it follows from (6) that P2 - (x2 + d)Q2n = 1 for all n.

We show by induction on m = deg P that if P2 - (x2 + d)Q2 = 1, then

P = ±P„ and Q = ±Qn for some «.

Clearly, if m = 0, then P = ±1 = ±P0 and ß = 0 = Q0.
If m = 1, then P = p0x + px and Q = q0, where p0 # 0. Substituting into

(1), we obtain

P2 - (x2 + d)Q2 = (p0x +Pl)2- (*2 + d)q¿

= (pI - lo)*2 + 2pnP\ x + (p¡ - dql2) = 1.

Since 2p0px = 0 and p0 ¥= 0, we have px = 0. Then 1 = px — dqfi = —dq¿.
But this is impossible for d = 1 or d = ±2. Therefore, (1) has no solutions

with m = deg P = 1.

Let m> 2. Suppose that P2 - (x2 + d)Q2 = 1, where deg P = m. Multi-

plying P and Q by ± 1 if necessary, we can assume that

P = Poxm +pxxm-x +p2xm-2 + ■■■ +pm,

Q = q0xm-X+qxx"-2+--- + qm_x,

where p0 > 1 and q0 ^ 1. Squaring P and Q and collecting terms, we obtain

\= P2-(x¿ + d)Q2

= (Pi - it)*2"1 + 2(PoP] - qc,qx)x2m-X

+ (p¡ + 2p0p2 - qx2 - 2q0q2 - dql)x2m~2

+2(/>o/>3 + f\Pi - %a3 - qx q2 - dq0qx)x2m~3 + ■ ■ ■ + (p2m - dq2_x).

The constant term equals 1, and the coefficients of all positive powers of x

equal 0. Thus,

(V) Po = %,

(«) Pi   -?1.

(9) 2p2 = 2q2 + dq0,

(10) 2^ = 2^3 + ^,,

(H) P2m-dqm-X = 1.

In particular, if m = 2, conditions (7)-(ll) imply that P = ±((2/d)x2 + 1)

= ±P, and Q = ±2x/d = ±QX.
We make the induction hypothesis that if P2 - (x2 + d)Q2 = 1 and deg P

< m, then P = ±P„-\ and Q = ±Qn-\ for some n > 1. Suppose that deg P

= m. Then



92 M. B. NATHANSON

Q-P = ((2/d)x2 + \)P - (2/d)x(x2 + d)Q

= (2/d)(p0 - q0)x'"+2 + (2/d)(Px - qx)xm+X

+((2/d)p2+pQ-(2/d)q2-2q0)xm

+((2/d)p3 +px- (2/d)q3 - 2qx)xm~X + ■■■.

It follows from conditions (7)—(10) that deg $~ P < m - 2. By (6), we have

(<¡>~P) — (x2 + d)(<fr~Q) = 1. Then by the induction hypothesis we know

that $~P = ±Pn_x and fQ = ±Q„-\ for some n > \. Then (4) and (5)

imply that P = ®+®~P = ±$+ Pn_x = ±Pn and ß = $+$~ß = ±$+ß„_,
= ±ß„. This concludes the proof.

Theorem 3. Define inductively two sequences of polynomials {i^^Lg and

{Qn}ñ=o by p0 = !. 00 = °. and, for » > .1,

P„ = *J»_, + (x2 - l)ß„_,,        Q„ = Pn_x + xQn_x.

Then P2 - (x2 - l)Q2 = 1 if and only if P = ±Pnand Q = ±Q„for some n.

Proof. Let P and Q be polynomials. We define polynomials

*+P and ty'Pby

y+P = xp + (x2 - \)Q,       <ï+Q = P + xQ,

and we define polynomials ty~ P and ^~ Q by

y-p = xP-(x2- l)ß,       ^-ß = -JP + xß.

One computes directly that

(12) *+<l>-p = <l?-*+P = P,

(13) *+*-ß = *+*~ß = ß,

(*+¿>)2 - (x2 + l)(*+ß)2 = (*~P)2 - (x2 + l)(*~ß)2

= P2 - (x2 + l)ß2.

Since P02 - (x2 + Oß2, = 1, and P„ = *+^_, and Qn = *+ßn_i, it follows

from (14) that P2 — (x2 + l)ß2 = 1 for all n. The proof that every solution of

P2 - (x2 + l)ß2 = 1 is of the form P = ±Pn, Q = ±Qn is exactly like the

proof of Theorem 2.

It is an open problem to determine the polynomials D for which the

polynomial Pell's equation P2 — DQ2 = 1 has nontrivial solutions.

Added in proof. David Zeitlin (personal communication) has observed

that the solutions of the polynomial Pell's equations can all be neatly

expressed in terms of the Chebyshev polynomials Tn(x) and Un(x).
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