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SOME INEQUALITIES FOR POLYNOMIALS

Q. I. RAHMAN

Abstract. Let pn(z) be a polynomial of degree n. Given that pn(z) has a

zero on the circle \z\ = p(0 < p < oo) we estimate maxi , Ä>1 |/>„(z)| in

terms of maxi:i   , |/>„(z)|. We also consider some other related problems.

It is well known (see [8, p. 346], or [6, vol. 1, p. 137, Problem III 269]) that

if pn(z) = 2yt=oaAz/c 's a polynomial of degree « such that |p„(z)|

â M for |z| Si 1, then at a point z outside the unit disk

(O \PnU)\   ̂    M\Z\",

where equality holds at some point z0 with |z0| > 1 only if it holds at all such

points and that is possible only whenp„(z) = a„z" = Men z", i.e. when all the

zeros of p„(z) lie at the origin. It is therefore natural to ask what improvement

results from supposing that p„(z) has a zero of modulus p. We have recently

proved that in case p = 1, we may replace (1) by ([4], see (1.7"))

f       2 - \/2 , i~\
(2) ^max^lpM g M/?"[l - —^-(l - /T1)2}

The proof of (2) depended very much on the fact that the prescribed zero was

located on \z\ = 1, and could not be modified in any obvious way to deal with

the problem in its full generality. Here we prove:

Theorem 1. Let pn (z) be a polynomial of degree « having a zero of modulus p

(0 < p < oo), and satisfying |p„(z)| Si M for \z\ Si 1. Denote by an and t„ the

smallest positive roots of the equations

(3) x"+x - 2x + 1 = 0,

and

(4) (« + \)xn+2 - (n + 3)x"+x + (« + l)x - (« - 1) = 0,

respectively. Then

, ,,       d(p)R + M,,„„
max   \p„(z)\ g -^-tttMR"

M=ä>1    " MR + d(p)

d(p)R» + M2-^))2R»-x
M
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where

i-T^T-^ iro'kp'ascj,,1 + p 1 - p"

1 - p    2p'n+\

(6) d(p) =
1 + P 1 - pn+1

«        2

i/o-„ SpSt,,

'/t„ S p S 1,
n + 1 1 + p

HO
It may be noted that (5) not only extends but also refines (2).

Theorem 1 is an immediate consequence of Lemmas 1 and 2 below.

Lemma 1. Ifp„(z) = 2£=o akz is a polynomial of degree n having a zero of

modulus p then

(7) \an\ Í d(p)max\Pn(z)\

where d(p) is given by (6). For small as well as large values of p the inequality is

essentially best possible.

Lemma 1 is readily obtained on applying the following result [7, Theorem

3] to the polynomial z"p(l/z).

Theorem A. Let p„(z) = 2£=o akzk be a polynomial of degree n having a

zero of modulus p. If on and rn denote the smallest positive roots of (3) and (4)

respectively, then

Kl = e(p)max|p„(2)|

where

1 - p   p"+x

\p-T+~pT^p-"     '/° = p = ^>
1 ~ P    2p"

C(p)^{p-T+-Pr^pn+Ä     ifoSpSt.,

n + 1 1 + p J " - p -   '

pc(l/p) if 1 S p.

The estimate is essentially best possible for small as well as for large values of p.

Lemma 2. If pn(z) = 2Jt=oafcz* *• a polynomial of degree n such that

max. i   | |/7„(z)| S= M, then for \z\ = R > 1,

a fortiori, we obtain
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(8') \p*W sM„l*° + m2 ~MKl'**-^

Proof of Lemma 2. It is clear that q(z) = z"pn(\/z) is also a polynomial.

Besides,

\o(e'9)\ = \pn(e~i9)\    forréalo.

Hence max. ., \q(z)\ = maxi .   , |p„(z)| Si M and by a well-known generali-

zation of Schwarz's lemma (see for example [5, p. 167])

MOI S MSM = MM|,f ,+ '«■]   for |z| < 1.
mn \q(0)\\z\+M kl|z| + M

Replacing z by 1/z we obtain the desired result.

Remark. We observe that |a„|, (M2 — \an\ )/M appearing on the right-

hand side of (8') cannot in general be replaced by smaller numbers. Given

e > 0 we construct polynomials pn(z) = 2¿=o akzk °^ degree n > (2/e) - 1

with

max|p„(z)| Si M   and
1*1-1

max \pn(z)\ > \an\R» + (^kC - k)/H    for * > ^.

Let 0 < |a| < A/ and consider the function

« ï     uMl±3        j. m1- l»l2   ± v      *
W  = f(z)  =  A/z:-—r; = a + -—-Z +    2    <?A:Z   ,

az + M M k=2   K

which is analytic in |z| < M/\a\ and maps the closed unit disk onto the disk

|w| Si M. If

s0(z) + sx(z) + ••■ + sn(z)

*(*) =-¡m-
where s0(z), sx(z), ..., sn(z), ...  are the partial sums of the Taylor series of

f(z) then [9, p. 236]

max |an(z)| si M   for « = 0, 1, 2, ....
1*1-1

Hence

Pn(z) = z"on(l/z)

„      M2 — loci        «       „_i "    « - k + 1        „_r.
= az" +-tj^-—rz"   ' +   2   -TT—Ckz

M        « + 1 £_2     « + 1

is a polynomial of degree « with

\Pn(z)\ â M   for |z| = 1.

Since
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a  .   (M2-\a\2\2        * 2 If2"
a|   + (,-Ä7-J   +J2|C*!   =2^ Jo |/(e<9)|2rf9 ê A/2

we have

2 \ck\2^^M2-^n = T
k = 2

and therefore

max|pn(z)| ^ max
\z\ = R \z\=R Ai « + 1

-  2  ^T^klT?^
t-2    «+ !

U/?„  |  A*2-!«!2     «     „„-,
|a|jR   +-M-n~TÎR

2

> |a|Ä" + (M   M^   - eW_1

if « > (2/e) - 1 and R > (My/n)/e.
As mentioned earlier, equality holds in (1) only when the coefficients

a0, ax, ..., an_x are all zero. From Lemma 2 we deduce

Theorem 2. If pn(z) = ^l=0akzk is a polynomial of degree n such that

max. i = 1 |/J„(z)| Si A7 ani/max0</t£„_1 \ak\ = a (0 ü a Si A/),   i/ie« /or   |z|

(A/2 - Ma)X/2R + M

R > 1,

Ip„(*)I ^ A/P"
(9) "'""       MR + (M2 - Ma)x/2

Si (A/2- A7a)1/2P" + aP"-1.

Proof. If/(z) = 2jj°=0 c*z* is analytic in |z| < 1 where \f(z)\ si Af then

([5, p. 172], see Exercise 9)

(10) |c0|z+ \ek\MS M'

Applying this result to the function

1,2,....

z"Pn(l/z) = an + an-\z + " ' ' + an-kz>< + - ' " + «0Z"

we obtain \an\ £ (A/2 - A7a)'   and then (9) follows from Lemma 2.

A theorem of van der Corput and Visser [3] says that if p„(z) = 2¡t=o akz>í

is a polynomial of degree n such that max. i, |p„(z)| si A7 and au, av (u < v)
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are two coefficients such that for no other coefficient aw ¥= 0 we have

w = u mod(i> - u), then

\au\ + \av\ Si M.

Hence, in particular

ni) \a„\ Si M -       max      \ak\
\ll> " 0¡S*S(»+l)/2    *'

and as another application of Lemma 2 we obtain

Theorem 3. If pn(z) = 2£=o akzk is a polynomial of degree « such that

max,z| = 1|p„(z)| Si M and maxosk£{n+x)/2\ak\ = b (0 Si b Si M), then for \z\
= R > 1

Remark. It follows from (11) that if pn(z) = 2£=o akz>i ¡s a polynomial of

degree « such that |a0| g |a„| then \an\ si j max|z| = 1 |p„(z)|, and by Lemma 2

max   |p„(z)| Si ,    fl"max|p„(z)|
/-J31 l*l=/o>i « + (1/2)     [4-1

S(|A« + ÍA',-1)maxlpn(z)l.
1*1-1

The condition |a0| g |a„ | is satisfied if for example p„(z) has all its zeros in

|z| è 1 orp„(z) is self reciprocal, i.e. z"p„(l/z) = p„(z). But in these two cases

(13) can be replaced by the much stronger (and sharp) inequality ([1], [2])

R" + 1
(14) max   |p„(z)| si —~— max|p„(z)|.

|2|=A>1 ¿ 1*1=1

Inequality (13) holds also for polynomials p„(z) for which z"pn(l/z) = pn(z).

However, we do not know the precise estimate in this case. It is readily seen

that (14) holds if « = 1. We can show that it also holds if « = 2. In fact, if

p2(z) = a2z2 + axz + a0 is such that z2p2(\/z) = p2(z) then a2 = a0 and

max|z| = /?>1|p2(z)| _      maX|z| = Ä>1|a2(z + 1/z) + ax\

max|zj = 1 |p2(z)| '   max|z| = 1 \a2(z + 1/z) + a, |

= R maxweg|2a2w + ax\/maxwe[_xx]\2a2w + ax\

where S is the ellipse with foci at 1, -1 and semiaxes ^(R + l/R), ¿(R — i/R).

Hence it is enough to show that for an arbitrary complex number f

max^glw - ï\/™xwe[_xx]\w - £| < ^R + - J.

Clearly, there is no loss of generality in assuming that f lies in the right half-

plane Hx, i.e. Re f ê 0. Thus we will like to show that for all f lying in Hx,

max
W - f

1   + ? ("i>
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Now, let w = u + iv be an arbitrary given point on S. As a function of f,

(w — f )/(l + f ) is analytic except at the point -1. Hence

maxfe//]|(>v-n/(l+ni

cannot be attained at an interior point of 77,. Therefore, all we need to show

is that

(15) vV+"r?2?'-K^ + ̂ )    f-K + '^S,-=c<r,<oc

But this is a matter of simple verification, and hence

7?2 + 1
max   \p2(z)\ Si —»— max|p2(z)

\z\ = R>\ z.        \z\-\

if z2p2(\/z) = p2(z).
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