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FINITE OPERATORS AND AMENABLE C*-ALGEBRAS

JOHN W. BUNCE'

ABSTRACT. In this paper we prove that the C*-algebra generated by the
left regular representation of a discrete group is amenable if and only if the
group is amenable. Theorems concerning finite operators and the re-
lationship between finite operators and amenable C*-algebras are proved.

1. Introduction. Amenable C*-algebras were introduced by B. Johnson [6].
Johnson proved that UHF and GCR C*-algebras are amenable but left open
the question of the existence of nonamenable C*-algebras [6, 10.2, p. 91]. In
§2 of this paper we prove that the C*-algebra C*(G) generated by the left
regular representation of a discrete group G is amenable if and only if the
group G is amenable, hence exhibiting many nonamenable C*-algebras. In §3
we prove that if T is an operator such that C¥(G) C C*(T) C CX(G)”, where
C*(T) is the C*-algebra generated by T and the identity, then G is amenable
if and only if T is a finite operator in the sense of J. Williams [15]. §4 is
concerned with finite operators.

2. Amenable algebras. Let 4 be a C*-algebra. A complex Banach space X is
called a Banach A-module if X is a two-sided 4-module and the bilinear
maps (a,x) — ax and (a,x) — xa from 4 X X to X are bounded. If X is a
Banach 4-module, then the dual space X* becomes a Banach 4-module if we
define fora € 4, f € X* and x € X, (af)(x) = f(xa) and (fa)(x) = f(ax). A
derivation from A into X* is a linear map D: 4 — X* such that

D (ab) = aD (b) + D (a)b

for all a,b € A. By the results of J. Ringrose the derivation D is automatically
norm continuous [9]. If f € X*, the function § (f): A — X* given by § (f)(a)
= af — fa is called the inner derivation induced by f. A C*-algebra 4 is said
to be amenable if every derivation from A into X* is inner for all Banach
A-modules X [6, p. 60]. R

For 4 a C*-algebra, let A ® A be the completion of the algebraic tensor
product 4 ® A4 in the greatest cross-norm. We can identify (4 ® 4)* with
the space of bounded bilinear functionals on 4 X 4. We can make A4 ® 4,
and hence (4 ® A)*, into Banach 4-modules by defining

a(b®c)=ab®c and (b®c)a=b® ca;
or by defining
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a°(b®c)=b®ac and (b®c)oa=ba® c.

The representations corresponding to these module actions commute. For
example,

a°(b(c®d))=b(ac(c®d)), a°((c®d)b)= (ac(c®d))b.

For A a C*-algebra let U(A) denote the set of unitaries in A. The following
proposition was stated in [1], but the proof given there was garbled (the proof
refers to an earlier theorem that was changed in revision). We take this
opportunity to clarify the proof.

PROPOSITION 1. Let A be a C*-algebra with identity. Then the following three
statements are equivalent:

(a) A is amenable. ) )

(b) There is a bounded linear map T of (A ® A)* into C = {f € (4 ® A)*:
af = fa for all a € A} such that T restricted to C is the identity on C and
T@cef)=a°T(f), T(fea)=T(f)caforallaE A, f € (4 ®A)*

(c) Let Y be a Banach A-module and X a two-sided A-submodule of Y. Let
f € X* be such that f(uxu*) = f(x) for all x € X, u € U(A). Then there is an
h € Y* such that h extends f and h(uyu*) = h(y) for ally € Y, all u € U(A).

ProOF. The implications (b) implies (c) and (b) implies (a) were proved in
[1]. We prove that (a) implies (b): Let ¥ = (4 ® A)* ® (4 ® A) be made
into a Banach A-module by the operations (f ® f)a = f® ta; a(f ® 1)
= f® at for a € A, fE(A®A)* and 1 € A ® A. Let Z be the closed
linear span of elements of the form

(acf)@t—f®(teca) and (fea)®t—f®(a°t)
wherea € 4,1t € A ® A, and f € (4 @A)*

Let W be the linear span of elements of the form f ® ¢, where f € C and
t€A®A. Then W is clearly an A-submodule of Y and a computation
shows that Z is an A-submodule of Y. Let X be the closed linear span of W
and Z. Then X is an A-submodule of Y and X/Z is an A-submodule of
Y/Z. Now finish the proof of (a) implies (b) as in [1, p. 570]. Finally, we
prove that (c) implies (b): First note that if X is an 4-submodule of Y and
f € X*, then f(uxu*) = f(x) for all x € X and u € U(A) if and only if
f(ax) = f(xa) for all x € X and a € 4. Then let Y,Z,W and X be as in the
proof of (a) implies (b). Let F € X* be defined by F(f ® ¢) = f(¢). Then F
is zero on Z and induces a map F, € (X/Z)*. If the bar denotes the coset in
X /Z, we have that

Fi(u(f®0u) = Fi((f® 1))

forallu € U(A) and elements f ® t € X. Hence, by (c), there is a G, €
(Y/Z)* which extends F, and such that

G (u(f ® 1)u*) = G, ((f ® 1))
for all u € U(A) and elements f ® ¢ in Y. Now define T: (4 ® A)* - C by
T(f)(1) =G ((f®1))
for f € (4 ® A)*andr € 4 ® A. The mapping T has the desired properties.
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Let G be a discrete group. For g € G define a unitary operator u, €
B(1*(G)) by

u,(F)(h) = F(g™'h)

where F € [%(G) and h € G. Let C*(G)be the C*-algebra generated by the
u, g € G, and let W*(G) be the weak closure of C}(G). Recall that a
discrete group G is called amenable if there is an invariant mean on the
bounded functions on G [5].

It follows from [6, p. 82] that if 4 is a C*-algebra weakly dense in W*(G),
then G is amenable if A is strongly amenable (see [6] for the definition of
strongly amenable).

PROPOSITION 2. Let A be a C*-algebra with C¥(G) C A C W*(G). If A is
an amenable C*-algebra, then G is an amenable group. Conversely, if G is an
amenable group then C¥*(G) is an amenable C*-algebra.

PROOF. Suppose that A is amenable. Then B (/%(G)) is a Banach 4-module
and A is itself a two-sided A-submodule of B(/*(G)). Let § € I*(G) be the
function on G which is one at the identity and zero elsewhere and define
f € A* by f(a) = (ab,8). Then f(ab) = f(ba) for all a,b € A [12, p. 164].
Then by part (c) of Proposition 1 there is an h € B(I*(G))* such that h
extends f and h(uyu*) = h(y) for all u € U(4), y € B(I¥G)). Since
(h + h*)/2 will also have the same property, we may assume that h is a selfadjoint
linear functional on B (/%(G)). We now write h = h* — h~ in its positive and
negative parts [3, 12.3] and use an idea of Effros and Hahn [4, p. 25] to show
that we can replace 4 by a state of B (/%(G)). Indeed, for u a fixed element of
U(A) let g,,8, in B(I*(G))* be defined by

gi(y) = h* (wu*),  g(y) = h™ (wu*),
where y € B(I*(G)). Then h = g, — g5, 8, > 0, g, > 0 and

IRl <l gl + [l 82l = &1(e) + ga(e)
=h*(e) + h7 (e) =|hT|+ A7 |= A

where e is the identity of B(/%(G)). Hence by [3, 12.3.4] we have that
g =h*, g =h". Thus h* (wu*) = h* (y) and A~ (wu*) = h~ (»). Not
both ~* and A~ are identically zero, since h extends f, hence there exists a
state b, on B(/*(G)) such that hy(y) = hy(uyu}) for all y € B(/*(G)) and
g € G.For¢ € I°(G) let M, € B(I 2(G)) be the operator which is multipli-
cation by ¢. Then for each g € G we have that uM,uf = M, o where
¢, € 1°(G) is defined by ¢,(h) = ¢(g~ 1n). Now let p: l°°(G) —-C be defined
by p(¢) = hy(M,). Then p(1) = 1, p > 0 and

p(9p) = m(uMyu) = h(M,) = p(¢)-

Hence p is a left-invariant mean on /*(G) and G is amenable.

Conversely, suppose G is an amenable discrete group and let Y be a
Banach C*(G)-module with X a two-sided C*(G)-submodule of Y. Let
f € X* be such that f(uxu*) = f(x) for all u € U(C*(G)) and x € X. Let
h € Y* be any extension of f and let 4,(y) = h(u,yu})forg € G,y € Y. Let
p be an invariant mean on /*(G) and define F € Y* by F(y) = p(h(»)).
Then F extends f and F(uyu;) = F(y) forall y € Y, g € G. Thus F( Y)
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= F(yu) forally € Y, g € G. The set {a € C}(G): F(ay) = F(ya) for all
y € Y} is a Banach algebra which contains all u,, hence F(ay) = F(ya) for
all @ € C*(G) and F(uyu*) = F(y) for all u € U(C*(G)). Thus C}G) is
amenable by Proposition 1.

We remark that C. Lance [7, Theorem 4.2] has proved that G is amenable if
and only if C*(G) is nuclear. We do not know the relationship (if any) that
exists between amenable and nuclear C*-algebras. Proposition 2 shows that
many nonamenable C*-algebras exist. In fact if G is the free group on two
generators and C*(G) C A C W*(G), then 4 is not amenable. In particular,
there exist nonamenable II;-factors. We do not know if G amenable implies
that W*(G) is amenable. S. Sakai has asked if the hyperfinite II,-factor is
amenable. We do not know the answer to this question.

3. Finite operators and amenable algebras. Let 4 € B(H), H a Hilbert
space. The operator A is called finite if there is a state f on B(H) such that
f(AB) = f(BA) for all B € B(H) [15].

PROPOSITION 3. Let G be a discrete group and let T € B(1*(G)) be such that
C*(G) C CX(T) C W*(G). Then T is a finite operator if and only if G is an
amenable group.

Proor. If G is an amenable group then there exists a positive linear map F:
B(I%(G)) > W*(G) such that F(BA) = F(B)A and F(AB) = AF(B) for all
B € B(I*(G)) and 4 € W*(G) [11, 4.4.21]. Let f € (W*(G))* be defined by
f(A) = (48,8) where § € /%(G) is the function which is one at the identity
and zero elsewhere. Then

f(F(TB)) = f(TF(B)) = f(F(B)T) = f(F(BT))

for all B € B(I*(G)). Hence T is a finite operator. Conversely, assume T is a
finite operator and suppose f is a state on B (/%(G)) such that f(AT) = f(TA)
for all 4 € B(I*G)). It then follows that f(4AB) = f(BA) for all 4 €
B(I*G)) and B € C*(T). In particular, f(ugAul) = f(A4) for all 4 €
B(I%G)) and g € G. Let M, e B(I*(G)) be multlphcatlon by ¢ € 1*(G)
and define p on /*(G) by p(4>) f (M¢) Then since M, = u, M u}, we have
that p(¢,) = p(¢) for all g € G and p is a left- 1nvanant mean on l °°(G), thus
G is amenable.

It is known that if T € B(H) is a finite operatdr, then there is a represen-
tation of C*(T) whose weak closure is a finite factor [15]. However, Proposi-
tion 3 shows that the converse is not true.

COROLLARY 4. There exists a nonfinite operator T which generates a type
I1,-factor.

PROOF. Let G be the free group on two generators ¢ and d. We proceed as
in [10, p. 453]). Let u, = A. + iB, and u; = A, + iB, be the Hermitian
decompositions of u, and u,;. There exist countable families of projections
E., F., € {u)}" suchthat4, € C*E_,: 1< n) the C*-algebra generated
by the E_, and the identity, and B, € C*(F_,: 1 < n). Then C¥X(E,,, F,,:
n > 1) is abelian and is generated as a Banach algebra by a countable family
of idempotents; hence by Rickart’s Lemma C*(E,,, F,,: n > 1) = C*(H,)

c,n’®

for some self-adjoint operator H, [14, p. 67]. Then u e C*(H,) C {u.}".
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Likewise there is a selfadjoint operator H, such that u; € C*(H,) C {u,}".
Let H= H. + iH; Then H € W*(G) and u,, u; € C*(H). Then C¥G)
C C*(H) C W*(G) and H generates a type II,-factor, but H is not a finite
operator by Proposition 3.

We remark that there exist amenable groups G such that C*(G) € C*(T)
C W*(T) for some operator 7. In fact if G is the “rational ax + b” group
then such a T can be constructed by the same method as that used in
Corollary 4.

4. Finite operators. The following proposition was conjectured by J. P.
Williams [16, p. 279]. The proof uses the idea of Effros and Hahn [4, p. 25]
that was used in the proof of Proposition 2.

PROPOSITION 5. Let A € B(H) be such that there is a nonzero selfadjoint
linear functional f on B(H) such that f(AB) = f(BA) for all B € B(H). Then
A is a finite operator.

ProOF. Let C = {T € B(H): f(TB) = f(BT) for all B € B(H)}. Then it
is easy to see that C is a C*-subalgebra of B(H) which contains A4, hence
C*(A) C C.Letf = f* —f~. Then as in the proof of Proposition 2 it follows
that f* (UBU*) = f* (B) and f~ (UBU*) = f~ (B) for all U € U(C) and
B € B(H). Thus f*(TB) = f*(BT) and f (TB) = f~(BT) for all B €
B(H) and T € C, hence f*(4B) = f*(BA) and f " (AB) = f~(BA) for all
B € B(H). Since at least one of f*, f~ must be nonzero, it follows that 4
must be a finite operator.

For §,,8, two subsets of B(H) let [5,,5,] denote the linear span of the
commutators S,S, — S,S, where S; € 5, i = 1,2. For 4 € B(H) let §, be
the inner derivation of B(H) induced by A, §,(B) = BA — AB, and let
R (8,) be the range of §,,.

COROLLARY 6. For an operator A € B(H) the following are equivalent.

(1) A4 is finite,

(2) [C*(A), B(H)] is not norm dense in B(H),

(3) the linear span of R(8,) U R(8,.) is not norm dense in B(H),

(4) the set of finite sums Z(X; — U.X,U*) where each X; € B(H) and
U, € U(C*(A)) is not norm dense in B(H).

ProOOF. The proof is immediate from Proposition 5 since the sets in (2), (3)
and (4) are *-stable sets and are hence not norm dense if and only if there is a
nonzero selfadjoint continuous linear functional which is zero on the set in
question.

The condition (2) was conjectured by Williams in [16]. Condition (3) should
be contrasted with Stampfli’s result that R (8,) is never norm dense for any A
[13].

We now denote by Fin(H) the set of finite operators in B(H). The
following two propositions concern representations of finite operators.

ProrosITION 7. Suppose T € B(H) and =w: C¥(T)— B(H,) is a *-
representation such that n(T) € Fin(H,). Then T € Fin(H).

Proor. Let m,: B(H)— B(K) be the “extension” representation of a,
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where H, is a subspace of K and wy(A4)|H, = w(A) for all 4 € C*(T) [3,
2.10.2]. Let P be the projection of K onto H,. Let g be a state of B(H,) such
that g(w(T)S) = g(S=(T)) for all S € B(H,), and define » on B(H) by
h(X) = g(Pm(X)P|H,). Then h is a state on B(H) and since H, reduces
7o(T) it is easily seen that A(XT) = h(TX) for all x € B(H) and T €
Fin(H).

For each positive integer n let R,(H) denote the set of operators on H that
have an n-dimensional reducing subspace. It is shown in [15] that R, (H) is
contained in Fin(H). Whether or not U R, (H) is dense in Fin(H) is an
open question. The following proposition is the analogue of Proposition 7 for
the set (U ,R,(H))". We do not know if the irreducibility assumption in this
proposition can be omitted.

ProposITION 8. Let T € B(H) and suppose w: C*(T)—> B(H,) is an
irreducible *-representation such that w(T) is in the norm closure of U ,R,(H ).
Then T is in the norm closure of U ,R,(H).

ProOF. We may assume that H, is a subspace of H. Let ¢ > 0 be given and
choose 4 € B(H,) such that ||7(T) — 4| < e and A4 has a reducing sub-
space H, of finite dimension n. Let E,, be the projection of H onto H, and let
Xy, X,,...,X, bean orthonormal basis for H, Then by [2, Lemma, p. 342]
there exists a unitary U € B(H) such that

|UBU*x; — @(B)x|| < e/n%
foreachi, 1 < i< n,and B = T or T*. Then |(UBU* — 7(B))E,| < & for
B = T or T* and we have

[(UTU* — EAE,)Ey||=|(UTU* — A)E, + (AEy — EAE)|
=|(UTU* — A)E,|
<|(UTU* = a(T))Eq| +||(m(T) — A)Eo| < 2e,
where we have used the fact that H,, reduces 4. The same inequality also
holds for T* and A* in place of T and 4. Hence
|[UTU* — (EpAEy|Hy ® Eg-UTU*|Eg" )|
<I(UTU* = (BB |Hy ® Eg-UTU* |Eg* ) Eo|
+||Eo (UTU* — (EyAEy|Hy ® Eg-UTU*|Es"))Eg||
< 2 + 2e.
Thus T is in the norm closure of (U ,R,(H))".
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