FINITE OPERATORS AND AMENABLE C*-ALGEBRAS

JOHN W. BUNCE1

ABSTRACT. In this paper we prove that the C^* -algebra generated by the left regular representation of a discrete group is amenable if and only if the group is amenable. Theorems concerning finite operators and the relationship between finite operators and amenable C^* -algebras are proved.

- 1. Introduction. Amenable C^* -algebras were introduced by B. Johnson [6]. Johnson proved that UHF and GCR C^* -algebras are amenable but left open the question of the existence of nonamenable C^* -algebras [6, 10.2, p. 91]. In §2 of this paper we prove that the C^* -algebra $C_r^*(G)$ generated by the left regular representation of a discrete group G is amenable if and only if the group G is amenable, hence exhibiting many nonamenable C^* -algebras. In §3 we prove that if T is an operator such that $C_r^*(G) \subseteq C^*(T) \subseteq C_r^*(G)''$, where $C^*(T)$ is the C^* -algebra generated by T and the identity, then G is amenable if and only if T is a finite operator in the sense of J. Williams [15]. §4 is concerned with finite operators.
- 2. Amenable algebras. Let A be a C^* -algebra. A complex Banach space X is called a Banach A-module if X is a two-sided A-module and the bilinear maps $(a,x) \to ax$ and $(a,x) \to xa$ from $A \times X$ to X are bounded. If X is a Banach A-module, then the dual space X^* becomes a Banach A-module if we define for $a \in A$, $f \in X^*$ and $x \in X$, (af)(x) = f(xa) and (fa)(x) = f(ax). A derivation from A into X^* is a linear map $D: A \to X^*$ such that

$$D(ab) = aD(b) + D(a)b$$

for all $a,b \in A$. By the results of J. Ringrose the derivation D is automatically norm continuous [9]. If $f \in X^*$, the function $\delta(f)$: $A \to X^*$ given by $\delta(f)(a) = af - fa$ is called the inner derivation induced by f. A C^* -algebra A is said to be amenable if every derivation from A into X^* is inner for all Banach A-modules X [6, p. 60].

For A a C^* -algebra, let $A \otimes A$ be the completion of the algebraic tensor product $A \otimes A$ in the greatest cross-norm. We can identify $(A \otimes A)^*$ with the space of bounded bilinear functionals on $A \times A$. We can make $A \otimes A$, and hence $(A \otimes A)^*$, into Banach A-modules by defining

$$a(b \otimes c) = ab \otimes c$$
 and $(b \otimes c)a = b \otimes ca$;

or by defining

Received by the editors January 16, 1975.

AMS (MOS) subject classifications (1970). Primary 47L05, 47C10, 47B99.

Key words and phrases. Amenable C*-algebras, amenable groups, finite operators.

¹ The author was partially supported by NSF grant GP-37526.

$$a \circ (b \otimes c) = b \otimes ac$$
 and $(b \otimes c) \circ a = ba \otimes c$.

The representations corresponding to these module actions commute. For example,

$$a \circ (b(c \otimes d)) = b(a \circ (c \otimes d)), \quad a \circ ((c \otimes d)b) = (a \circ (c \otimes d))b.$$

For A a C^* -algebra let U(A) denote the set of unitaries in A. The following proposition was stated in [1], but the proof given there was garbled (the proof refers to an earlier theorem that was changed in revision). We take this opportunity to clarify the proof.

PROPOSITION 1. Let A be a C^* -algebra with identity. Then the following three statements are equivalent:

- (a) A is amenable.
- (b) There is a bounded linear map T of $(A \hat{\otimes} A)^*$ into $C = \{ f \in (A \hat{\otimes} A)^* : af = fa \text{ for all } a \in A \}$ such that T restricted to C is the identity on C and $T(a \circ f) = a \circ T(f)$, $T(f \circ a) = T(f) \circ a$ for all $a \in A$, $f \in (A \hat{\otimes} A)^*$.
- (c) Let Y be a Banach A-module and X a two-sided A-submodule of Y. Let $f \in X^*$ be such that $f(uxu^*) = f(x)$ for all $x \in X$, $u \in U(A)$. Then there is an $h \in Y^*$ such that h extends f and $h(uyu^*) = h(y)$ for all $y \in Y$, all $u \in U(A)$.

PROOF. The implications (b) implies (c) and (b) implies (a) were proved in [1]. We prove that (a) implies (b): Let $Y = (A \hat{\otimes} A)^* \hat{\otimes} (A \hat{\otimes} A)$ be made into a Banach A-module by the operations $(f \otimes t)a = f \otimes ta$; $a(f \otimes t) = f \otimes at$ for $a \in A$, $f \in (A \hat{\otimes} A)^*$ and $t \in A \hat{\otimes} A$. Let Z be the closed linear span of elements of the form

$$(a \circ f) \otimes t - f \otimes (t \circ a)$$
 and $(f \circ a) \otimes t - f \otimes (a \circ t)$

where $a \in A$, $t \in A \hat{\otimes} A$, and $f \in (A \hat{\otimes} A)^*$.

Let W be the linear span of elements of the form $f \otimes t$, where $f \in C$ and $t \in A \hat{\otimes} A$. Then W is clearly an A-submodule of Y and a computation shows that Z is an A-submodule of Y. Let X be the closed linear span of W and Z. Then X is an A-submodule of Y and X/Z is an A-submodule of Y/Z. Now finish the proof of (a) implies (b) as in [1, p. 570]. Finally, we prove that (c) implies (b): First note that if X is an A-submodule of Y and $Y \in X$ and $Y \in X$ then $Y \in X$ and $Y \in X$ be defined by $Y \in X$ and $Y \in X$ in the proof of (a) implies (b). Let $Y \in X$ be defined by $Y \in X$ and $Y \in X$ and induces a map $Y \in X$. If the bar denotes the coset in X/X, we have that

$$F_1\big(u(f\otimes t)^{\scriptscriptstyle{\text{-}}}u^*\big)=F_1\big((f\otimes t)^{\scriptscriptstyle{\text{-}}}\big)$$

for all $u \in U(A)$ and elements $f \otimes t \in X$. Hence, by (c), there is a $G_1 \in (Y/Z)^*$ which extends F_1 and such that

$$G_1(u(f \otimes t)^-u^*) = G_1((f \otimes t)^-)$$

for all $u \in U(A)$ and elements $f \otimes t$ in Y. Now define $T: (A \hat{\otimes} A)^* \to C$ by

$$T(f)(t) = G_1((f \otimes t)^{-})$$

for $f \in (A \hat{\otimes} A)^*$ and $t \in A \hat{\otimes} A$. The mapping T has the desired properties.

Let G be a discrete group. For $g \in G$ define a unitary operator $u_g \in B(l^2(G))$ by

$$u_{\mathfrak{g}}(F)(h) = F(\mathfrak{g}^{-1}h)$$

where $F \in l^2(G)$ and $h \in G$. Let $C_r^*(G)$ be the C^* -algebra generated by the u_g , $g \in G$, and let $W^*(G)$ be the weak closure of $C_r^*(G)$. Recall that a discrete group G is called amenable if there is an invariant mean on the bounded functions on G [5].

It follows from [6, p. 82] that if A is a C^* -algebra weakly dense in $W^*(G)$, then G is amenable if A is *strongly* amenable (see [6] for the definition of strongly amenable).

PROPOSITION 2. Let A be a C*-algebra with $C_r^*(G) \subseteq A \subseteq W^*(G)$. If A is an amenable C*-algebra, then G is an amenable group. Conversely, if G is an amenable group then $C_r^*(G)$ is an amenable C*-algebra.

PROOF. Suppose that A is amenable. Then $B(l^2(G))$ is a Banach A-module and A is itself a two-sided A-submodule of $B(l^2(G))$. Let $\delta \in l^2(G)$ be the function on G which is one at the identity and zero elsewhere and define $f \in A^*$ by $f(a) = (a\delta, \delta)$. Then f(ab) = f(ba) for all $a, b \in A$ [12, p. 164]. Then by part (c) of Proposition 1 there is an $h \in B(l^2(G))^*$ such that h extends f and $h(uyu^*) = h(y)$ for all $u \in U(A)$, $y \in B(l^2(G))$. Since $(h+h^*)/2$ will also have the same property, we may assume that h is a selfadjoint linear functional on $B(l^2(G))$. We now write $h = h^+ - h^-$ in its positive and negative parts [3, 12.3] and use an idea of Effros and Hahn [4, p. 25] to show that we can replace h by a state of $B(l^2(G))$. Indeed, for u a fixed element of U(A) let g_1, g_2 in $B(l^2(G))^*$ be defined by

$$g_1(y) = h^+(uyu^*), \qquad g_2(y) = h^-(uyu^*),$$

where $y \in B(l^2(G))$. Then $h = g_1 - g_2, g_1 \ge 0, g_2 \ge 0$ and

$$||h|| \le ||g_1|| + ||g_2|| = g_1(e) + g_2(e)$$

= $h^+(e) + h^-(e) = ||h^+|| + ||h^-|| = ||h||$,

where e is the identity of $B(l^2(G))$. Hence by [3, 12.3.4] we have that $g_1 = h^+$, $g_2 = h^-$. Thus h^+ (uyu^*) = h^+ (y) and h^- (uyu^*) = h^- (y). Not both h^+ and h^- are identically zero, since h extends f, hence there exists a state h_1 on $B(l^2(G))$ such that $h_1(y) = h_1(u_gyu_g^*)$ for all $y \in B(l^2(G))$ and $g \in G$. For $\phi \in l^\infty(G)$ let $M_\phi \in B(l^2(G))$ be the operator which is multiplication by ϕ . Then for each $g \in G$ we have that $u_gM_\phi u_g^* = M_{\phi_g}$, where $\phi_g \in l^\infty(G)$ is defined by $\phi_g(h) = \phi(g^{-1}h)$. Now let $\rho: l^\infty(G) \to \mathbb{C}$ be defined by $\rho(\phi) = h_1(M_\phi)$. Then $\rho(1) = 1$, $\rho \geqslant 0$ and

$$\rho(\phi_g) = h_1(u_g M_{\phi} u_g^*) = h_1(M_{\phi}) = \rho(\phi).$$

Hence ρ is a left-invariant mean on $l^{\infty}(G)$ and G is amenable.

Conversely, suppose G is an amenable discrete group and let Y be a Banach $C_r^*(G)$ -module with X a two-sided $C_r^*(G)$ -submodule of Y. Let $f \in X^*$ be such that $f(uxu^*) = f(x)$ for all $u \in U(C_r^*(G))$ and $x \in X$. Let $h \in Y^*$ be any extension of f and let $h_g(y) = h(u_gyu_g^*)$ for $g \in G$, $y \in Y$. Let ρ be an invariant mean on $l^\infty(G)$ and define $F \in Y^*$ by $F(y) = \rho(h_g(y))$. Then F extends f and $F(u_gyu_g^*) = F(y)$ for all $y \in Y$, $g \in G$. Thus $F(u_gy)$

J. W. BUNCE

= $F(yu_g)$ for all $y \in Y$, $g \in G$. The set $\{a \in C_r^*(G): F(ay) = F(ya) \text{ for all } y \in Y\}$ is a Banach algebra which contains all u_g , hence F(ay) = F(ya) for all $a \in C_r^*(G)$ and $F(uyu^*) = F(y)$ for all $u \in U(C_r^*(G))$. Thus $C_r^*(G)$ is amenable by Proposition 1.

We remark that C. Lance [7, Theorem 4.2] has proved that G is amenable if and only if $C_r^*(G)$ is nuclear. We do not know the relationship (if any) that exists between amenable and nuclear C^* -algebras. Proposition 2 shows that many nonamenable C^* -algebras exist. In fact if G is the free group on two generators and $C_r^*(G) \subseteq A \subseteq W^*(G)$, then A is not amenable. In particular, there exist nonamenable II_1 -factors. We do not know if G amenable implies that $W^*(G)$ is amenable. S. Sakai has asked if the hyperfinite II_1 -factor is amenable. We do not know the answer to this question.

3. Finite operators and amenable algebras. Let $A \in B(H)$, H a Hilbert space. The operator A is called finite if there is a state f on B(H) such that f(AB) = f(BA) for all $B \in B(H)$ [15].

PROPOSITION 3. Let G be a discrete group and let $T \in B(l^2(G))$ be such that $C_r^*(G) \subseteq C^*(T) \subseteq W^*(G)$. Then T is a finite operator if and only if G is an amenable group.

PROOF. If G is an amenable group then there exists a positive linear map F: $B(l^2(G)) \to W^*(G)$ such that F(BA) = F(B)A and F(AB) = AF(B) for all $B \in B(l^2(G))$ and $A \in W^*(G)$ [11, 4.4.21]. Let $f \in (W^*(G))^*$ be defined by $f(A) = (A\delta, \delta)$ where $\delta \in l^2(G)$ is the function which is one at the identity and zero elsewhere. Then

$$f(F(TB)) = f(TF(B)) = f(F(B)T) = f(F(BT))$$

for all $B \in B(l^2(G))$. Hence T is a finite operator. Conversely, assume T is a finite operator and suppose f is a state on $B(l^2(G))$ such that f(AT) = f(TA) for all $A \in B(l^2(G))$. It then follows that f(AB) = f(BA) for all $A \in B(l^2(G))$ and $B \in C^*(T)$. In particular, $f(u_gAu_g^*) = f(A)$ for all $A \in B(l^2(G))$ and $g \in G$. Let $M_{\phi} \in B(l^2(G))$ be multiplication by $\phi \in l^{\infty}(G)$ and define ρ on $l^{\infty}(G)$ by $\rho(\phi) = f(M_{\phi})$. Then since $M_{\phi_g} = u_gM_{\phi}u_g^*$, we have that $\rho(\phi_g) = \rho(\phi)$ for all $g \in G$ and ρ is a left-invariant mean on $l^{\infty}(G)$; thus G is amenable.

It is known that if $T \in B(H)$ is a finite operator, then there is a representation of $C^*(T)$ whose weak closure is a finite factor [15]. However, Proposition 3 shows that the converse is not true.

COROLLARY 4. There exists a nonfinite operator T which generates a type II_1 -factor.

PROOF. Let G be the free group on two generators c and d. We proceed as in [10, p. 453]. Let $u_c = A_c + iB_c$ and $u_d = A_d + iB_d$ be the Hermitian decompositions of u_c and u_d . There exist countable families of projections $E_{c,n}, F_{c,n} \in \{u_c\}''$ such that $A_c \in C^*(E_{c,n}: 1 \le n) = \text{the } C^*$ -algebra generated by the $E_{c,n}$ and the identity, and $B_c \in C^*(F_{c,n}: 1 \le n)$. Then $C^*(E_{c,n}, F_{c,n}: n \ge 1)$ is abelian and is generated as a Banach algebra by a countable family of idempotents; hence by Rickart's Lemma $C^*(E_{c,n}, F_{c,n}: n \ge 1) = C^*(H_c)$ for some self-adjoint operator H_c [14, p. 67]. Then $u_c \in C^*(H_c) \subseteq \{u_c\}''$.

Likewise there is a selfadjoint operator H_d such that $u_d \in C^*(H_d) \subseteq \{u_d\}''$. Let $H = H_c + iH_d$. Then $H \in W^*(G)$ and u_c , $u_d \in C^*(H)$. Then $C_r^*(G) \subseteq C^*(H) \subseteq W^*(G)$ and H generates a type II₁-factor, but H is not a finite operator by Proposition 3.

We remark that there exist amenable groups G such that $C_r^*(G) \subseteq C^*(T) \subseteq W^*(T)$ for some operator T. In fact if G is the "rational ax + b" group then such a T can be constructed by the same method as that used in Corollary 4.

4. Finite operators. The following proposition was conjectured by J. P. Williams [16, p. 279]. The proof uses the idea of Effros and Hahn [4, p. 25] that was used in the proof of Proposition 2.

PROPOSITION 5. Let $A \in B(H)$ be such that there is a nonzero selfadjoint linear functional f on B(H) such that f(AB) = f(BA) for all $B \in B(H)$. Then A is a finite operator.

PROOF. Let $C = \{T \in B(H): f(TB) = f(BT) \text{ for all } B \in B(H)\}$. Then it is easy to see that C is a C^* -subalgebra of B(H) which contains A, hence $C^*(A) \subseteq C$. Let $f = f^+ - f^-$. Then as in the proof of Proposition 2 it follows that $f^+(UBU^*) = f^+(B)$ and $f^-(UBU^*) = f^-(B)$ for all $U \in U(C)$ and $B \in B(H)$. Thus $f^+(TB) = f^+(BT)$ and $f^-(TB) = f^-(BT)$ for all $B \in B(H)$ and $T \in C$, hence $f^+(AB) = f^+(BA)$ and $f^-(AB) = f^-(BA)$ for all $B \in B(H)$. Since at least one of f^+ , f^- must be nonzero, it follows that A must be a finite operator.

For S_1, S_2 two subsets of B(H) let $[S_1, S_2]$ denote the linear span of the commutators $S_1S_2 - S_2S_1$ where $S_i \in S_i$, i = 1,2. For $A \in B(H)$ let δ_A be the inner derivation of B(H) induced by A, $\delta_A(B) = BA - AB$, and let $R(\delta_A)$ be the range of δ_A .

COROLLARY 6. For an operator $A \in B(H)$ the following are equivalent:

- (1) A is finite,
- (2) $[C^*(A), B(H)]$ is not norm dense in B(H),
- (3) the linear span of $R(\delta_A) \cup R(\delta_{A^*})$ is not norm dense in B(H),
- (4) the set of finite sums $\sum (X_i U_i X_i U_i^*)$ where each $X_i \in B(H)$ and $U_i \in U(C^*(A))$ is not norm dense in B(H).

PROOF. The proof is immediate from Proposition 5 since the sets in (2), (3) and (4) are *-stable sets and are hence not norm dense if and only if there is a nonzero selfadjoint continuous linear functional which is zero on the set in question.

The condition (2) was conjectured by Williams in [16]. Condition (3) should be contrasted with Stampfli's result that $R(\delta_A)$ is never norm dense for any A [13].

We now denote by Fin(H) the set of finite operators in B(H). The following two propositions concern representations of finite operators.

PROPOSITION 7. Suppose $T \in B(H)$ and $\pi: C^*(T) \to B(H_{\pi})$ is a *-representation such that $\pi(T) \in \text{Fin}(H_{\pi})$. Then $T \in \text{Fin}(H)$.

PROOF. Let π_0 : $B(H) \to B(K)$ be the "extension" representation of π ,

where H_{π} is a subspace of K and $\pi_0(A)|H_{\pi}=\pi(A)$ for all $A\in C^*(T)$ [3, 2.10.2]. Let P be the projection of K onto H_{π} . Let g be a state of $B(H_{\pi})$ such that $g(\pi(T)S)=g(S\pi(T))$ for all $S\in B(H_{\pi})$, and define h on B(H) by $h(X)=g(P\pi_0(X)P|H_{\pi})$. Then h is a state on B(H) and since H_{π} reduces $\pi_0(T)$ it is easily seen that h(XT)=h(TX) for all $x\in B(H)$ and $T\in Fin(H)$.

For each positive integer n let $R_n(H)$ denote the set of operators on H that have an n-dimensional reducing subspace. It is shown in [15] that $R_n(H)^-$ is contained in Fin(H). Whether or not $\bigcup_n R_n(H)$ is dense in Fin(H) is an open question. The following proposition is the analogue of Proposition 7 for the set $(\bigcup_n R_n(H))^-$. We do not know if the irreducibility assumption in this proposition can be omitted.

PROPOSITION 8. Let $T \in B(H)$ and suppose $\pi: C^*(T) \to B(H_{\pi})$ is an irreducible *-representation such that $\pi(T)$ is in the norm closure of $\bigcup_n R_n(H_{\pi})$. Then T is in the norm closure of $\bigcup_n R_n(H)$.

PROOF. We may assume that H_{π} is a subspace of H. Let $\varepsilon > 0$ be given and choose $A \in B(H_{\pi})$ such that $\|\pi(T) - A\| < \varepsilon$ and A has a reducing subspace H_0 of finite dimension n. Let E_0 be the projection of H onto H_0 and let x_1, x_2, \ldots, x_n be an orthonormal basis for H_0 . Then by [2, Lemma, p. 342] there exists a unitary $U \in B(H)$ such that

$$||UBU^*x_i - \pi(B)x_i|| \leq \varepsilon/n^{\frac{1}{2}}$$

for each $i, 1 \le i \le n$, and B = T or T^* . Then $\|(UBU^* - \pi(B))E_0\| \le \varepsilon$ for B = T or T^* and we have

$$\begin{split} \|(UTU^* - E_0 A E_0) E_0\| &= \|(UTU^* - A) E_0 + (A E_0 - E_0 A E_0)\| \\ &= \|(UTU^* - A) E_0\| \\ &\leq \|(UTU^* - \pi(T)) E_0\| + \|(\pi(T) - A) E_0\| \leq 2\varepsilon, \end{split}$$

where we have used the fact that H_0 reduces A. The same inequality also holds for T^* and A^* in place of T and A. Hence

$$\begin{aligned} \|UTU^* - (E_0 A E_0 | H_0 \oplus E_0^{\perp} UTU^* | E_0^{\perp}) \| \\ &\leq \|(UTU^* - (E_0 A E_0 | H_0 \oplus E_0^{\perp} UTU^* | E_0^{\perp})) E_0 \| \\ &+ \|E_0 (UTU^* - (E_0 A E_0 | H_0 \oplus E_0^{\perp} UTU^* | E_0^{\perp})) E_0^{\perp} \| \\ &\leq 2\varepsilon + 2\varepsilon. \end{aligned}$$

Thus T is in the norm closure of $(\bigcup_{n} R_{n}(H))^{-}$.

REFERENCES

- 1. J. W. Bunce, Characterizations of amenable and strongly amenable C*-algebras, Pacific J. Math. 43(1972), 563-572. MR47 #9298.
- 2. J. W. Bunce and J. A. Deddens, Subspace approximants and GCR operators, Indiana Univ. Math. J. 24(1974), 341-349.
- 3. J. Dixmier, Les C*-algèbres et leurs représentations, Cahiers scientifiques, fasc. 29, Gauthier-Villars, Paris, 1964. MR30 #1404.

- 4. E. G. Effros and F. Hahn, Locally compact transformation groups and C*-algebras, Mem. Amer. Math. Soc. No. 75(1967). MR37 #2895.
- 5. F. P. Greenleaf, *Invariant means on topological groups and their applications*, Van Nostrand Math. Studies, no. 16, Van Nostrand, Princeton, N.J., 1969. MR40 #4776.
 - 6. B. E. Johnson, Cohomology in Banach algebras, Mem. Amer. Math. Soc. No. 127(1972).
 - 7. C. Lance, On nuclear C*-algebras, J. Functional Analysis 12(1973), 157-176.
- 8. C. Pearcy and N. Salinas, Finite-dimensional representations of separable C*-algebras, Bull. Amer. Math. Soc. 80(1974), 970-972.
- 9. J. R. Ringrose, Automatic continuity of derivations of operator algebras, J. London Math. Soc. (2) 5(1972), 432-438.
- 10. T. Saito, Generation of von Neumann algebras, Lectures on Operator Algebras, Lecture Notes in Math., vol. 247, Springer-Verlag, Berlin and New York, 1972.
 - 11. S. Sakai, C*-algebras and W*-algebras, Springer-Verlag, New York, 1971.
 - 12. J. T. Schwartz, W*-algebras, Gordon and Breach, New York, 1967. MR38 #547.
- 13. J. G. Stampfli, *Derivations on* \mathfrak{B} (\mathfrak{K}): *The range*, Illinois J. Math. 17(1973), 518-524. MR47 #7460.
 - 14. D. Topping, Lectures on von Neumann algebras, Van Nostrand Reinhold, London, 1971.
 - 15. J. P. Williams, Finite operators, Proc. Amer. Math. Soc. 26(1970), 129-136. MR41#9039.
 - 16. _____, On the range of a derivation, Pacific J. Math. 38(1971), 276-279. MR 46 #7923.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF KANSAS, LAWRENCE, KANSAS 66045