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FINITE OPERATORS AND AMENABLE C*-ALGEBRAS

JOHN W. BUNCE1

Abstract. In this paper we prove that the C*-algebra generated by the

left regular representation of a discrete group is amenable if and only if the

group is amenable. Theorems concerning finite operators and the re-

lationship between finite operators and amenable C*-algebras are proved.

1. Introduction. Amenable C*-algebras were introduced by B. Johnson [6].

Johnson proved that UHF and GCR C*-algebras are amenable but left open

the question of the existence of nonamenable C*-algebras [6, 10.2, p. 91]. In

§2 of this paper we prove that the C*-algebra C*(G) generated by the left

regular representation of a discrete group G is amenable if and only if the

group G is amenable, hence exhibiting many nonamenable C*-algebras. In §3

we prove that if T is an operator such that C*(G) G C*(T) G C*(G)", where

C*(T) is the C*-algebra generated by T and the identity, then G is amenable

if and only if T is a finite operator in the sense of J. Williams [15]. §4 is

concerned with finite operators.

2. Amenable algebras. Let A be a C*-algebra. A complex Banach space X is

called a Banach A -module if X is a two-sided /I-module and the bilinear

maps (a,x) —> ax and (a,x) —> xa from A X X to X are bounded. If A" is a

Banach A -module, then the dual space X* becomes a Banach .4-module if we

define for a G A,f G X* and x G X, (af)(x) = f(xa) and (/a)(x) = /(ax). A
derivation from A into X* is a linear map D: A —» X* such that

D(ab) = aD(b) + D(a)b

for all a,b G A. By the results of J. Ringrose the derivation D is automatically

norm continuous [9]. If / G X*, the function 8(f): A —> X* given by 8(f)(a)

= af - fa is called the inner derivation induced by/ A C*-algebra A is said

to be amenable if every derivation from A into X* is inner for all Banach

.4-modules X [6, p. 60].

For A a C*-algebra, let A <8> A be the completion of the algebraic tensor

product A ® A in the greatest cross-norm. We can identify (A <8> A)* with

the space of bounded bilinear functionals on A X A. We can make A <8> A,

and hence (A ® A)*, into Banach A -modules by defining

a(b ® c) = ab ® c    and    (b <S> c)a = b ® ca;

or by defining

-
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a » (b ® c) = b ® ac    and    (6 ® c) ° a «■ ba ® c.

The representations corresponding to these module actions commute. For

example,

a o (b(c ® d)) = b(a » (c ® d)),       a ° ((c ® ¿7)6) = (a ° (c <8> ¿))6.

For .4 a C*-algebra let t/(/l) denote the set of unitaries in A. The following

proposition was stated in [1], but the proof given there was garbled (the proof

refers to an earlier theorem that was changed in revision). We take this

opportunity to clarify the proof.

Proposition 1. Let A be a C*-algebra with identity. Then the following three

statements are equivalent:

(a) A is amenable.

(b) There is a bounded linear map T of (A ® A)* into C = {f G (A ® A)*:

af = fa for all a G A) such that T restricted to C is the identity on C and

T(a o f) = a o T(f), T(f ° a) = T(f) ° a for all a G A,f G (A ® A)*.
(c) Let Y be a Banach A-module and X a two-sided A-submodule of Y. Let

f G X* be such that f(uxu*) = f(x)for all x G X, u G U(A). Then there is an

h G Y* such that h extends f and h(uyu*) = h(y)for ally G Y, all u G U(A).

Proof. The implications (b) implies (c) and (b)Jmplies (a) were proved in

[1]. We prove that (a) implies (b): Let Y = (A ® A)* ® (A ® A) be made

into a Banach A -module by Jhe operations (/ ® t)a = / ® ta; a(f ® t)

= / ® at for a G A, f G (A ® A)* and t G A ® A. Let Z be the closed

linear span of elements of the form

(a of)® t -f® (t ° a)    and     (/ ° a) ® t - / ® (a ° t)

where a G A, t G A ® A, and f G (A ® A)*.

Let W be the linear span of elements of the form f ® t, where f G C and

t G A ® A. Then W is clearly an A -submodule of Y and a computation

shows that Z is an A -submodule of Y. Let X be the closed linear span of W

and Z. Then X is an A -submodule of Y and X/Z is an A -submodule of

Y/Z. Now finish the proof of (a) implies (b) as in [1, p. 570]. Finally, we

prove that (c) implies (b): First note that if X is an A -submodule of Y and

/ G X*, then f(uxu*) = /(*) for all x G X and u G U(A) if and only if

f(ax) = f(xd) for all x G X and a G A. Then let Y,Z, W and X be as in the

proof of (a) implies (b). Let F G X* be defined by F(f ® t) = f(t). Then F

is zero on Z and induces a map Fx G (X/Z)*. If the bar denotes the coset in

X/ Z, we have that

Fx(u(f®t)-u*) = Fx((f®ty)

for all m G U(A) and elements/ ® t G X.   Hence,   by (c), there is a Gx G

(Y/Z)* which extends Fx and such that

Gx(u(f®t)-u*)= Gx((f®ty)

for all u G U(A) and elements/ ® t in Y. Now define T: (A ® A)* -* C by

T(f)(t)=Gx((f®ty)

for/ G (A ® A)* and t G A ® A. The mapping T has the desired properties.
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Let G be a discrete group. For g G G define a unitary operator ug E

B(l\G)) by

«g(F)(«) = F(g-'«)

where F E l2(G) and « G G. Let C*(G) be the C*-algebra generated by the

ug, g E G, and let W*(G) be the weak closure of C*(G). Recall that a

discrete group G is called amenable if there is an invariant mean on the

bounded functions on G [5].

It follows from [6, p. 82] that if A is a C*-algebra weakly dense in W*(G),

then G is amenable if A is strongly amenable (see [6] for the definition of

strongly amenable).

Proposition 2. Let A be a C*-algebra with C*(G) E A E W*(G). If A is

an amenable C*-algebra, then G is an amenable group. Conversely, if G is an

amenable group then C*(G) is an amenable C*-algebra.

Proof. Suppose that A is amenable. Then B(l2(G)) is a Banach A -module

and A is itself a two-sided ,4-submodule of B(l2(G)). Let 8 E l2(G) be the

function on G which is one at the identity and zero elsewhere and define

/ G A* by f(a) = (a8,8). Then f(ab) = f(ba) for all a,b G A [12, p. 164].
Then by part (c) of Proposition 1 there is an « G B(l2(G))* such that «

extends / and h(uyu*) = h(y) for all u E U(A), y E B(l2(G)). Since

(« + «*)/2 will also have the same property, we may assume that « is a selfadjoint

linear functional on B(l2(G)). We now write « = «+ — h~ in its positive and

negative parts [3, 12.3] and use an idea of Effros and Hahn [4, p. 25] to show

that we can replace « by a state of B(l2(G)). Indeed, for u a fixed element of

U(A) let gx,g2 in B(l2(G))* be defined by

S\{y) = h+ (uyu*),       g2(y) = «" (uyu*),

where y E B(l2(G)). Then « = gx - g2, gx > 0, g2 > 0 and

\\h\\<\\84 + \\g2\\=8Á<:) +82(e)

= «+(e) + «-(e)=||« + || + ||«-|| = ||«||,

where e is the identity of B(l2(G)). Hence by [3, 12.3.4] we have that

gx = h + , g2 = h~. Thus «+ (uyu*) = «+ (y) and h~ (uyu*) = h~ (y). Not

both «+ and « ~ are identically zero, since « extends / hence there exists a

state «, on B(l2(G)) such that hx(y) = hx(ugyu*) for all y E B(l2(G)) and

g E G. For <i> G /°°(G) let M,,, G B(l2(G)) be the operator which is multipli-

cation by </>. Then for each g G G we have that u M^u* = M^, where

<j>g E l°°(G) is defined by <i>g(«) = <Hg~'«)- Now let p: /°°(C7) -+ C be* defined
by p(<i>) = hx(M^). Then p(l) = 1, p > 0 and

p(<#>g) = hx(ugM^u*g) = «,(MJ = p(<?>).

Hence p is a left-invariant mean on /°°(G) and G is amenable.

Conversely, suppose G is an amenable discrete group and let F be a

Banach C*(G)-module with X a two-sided C*(G)-submodule of Y. Let

/ G X* be such that/(«xu*) = /(x) for all u G í/(Cr*(G)) and x G X. Let

« G F* be any extension of /and let hg(y) = h(ugyu*) for g G G, y G F. Let

p be an invariant mean on /°°(G) and define F G F* by F (y) = p(hg(y)).

Then F extends / and F(ugyu*) = F(>>) for ail y E Y, g E G. Thus F(ugy)
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= F(yug) for all^ G y, g G G. The set {a G C*(G): F(ay) = F(yd) for ail

y G T) is a Banach algebra which contains all ug, hence F (ay) — F (yd) for

all a G C*(G) and F(uyu*) = F(y) for all u G U(C*(G)). Thus C*(G) is

amenable by Proposition 1.

We remark that C Lance [7, Theorem 4.2] has proved that G is amenable if

and only if C*(G) is nuclear. We do not know the relationship (if any) that

exists between amenable and nuclear C*-algebras. Proposition 2 shows that

many nonamenable C*-algebras exist. In fact if G is the free group on two

generators and C*(G) GAG W*(G), then A is not amenable. In particular,

there exist nonamenable 11,-factors. We do not know if G amenable implies

that W*(G) is amenable. S. Sakai has asked if the hyperfinite IIrfactor is

amenable. We do not know the answer to this question.

3. Finite operators and amenable algebras. Let A G B(H), Ha Hilbert

space. The operator A is called finite if there is a state f on B (77) such that

f(AB) = f(BA) for all B G B(H) [15].

Proposition 3. Let G be a discrete group and let T G B(l2(G))be such that

C*(G) G C*(T) G W*(G). Then T is a finite operator if and only if G is an

amenable group.

Proof. If G is an amenable group then there exists a positive linear map F:

B(l2(G))^> W*(G) such that F(BA) = F(B)A and F(AB) = AF(B) for all
B G B(l2(G)) and A G W*(G) [11, 4.4.21]. Let/ G (W*(G))* be defined by
f(A) = (A8,8) where ô G l2(G) is the function which is one at the identity

and zero elsewhere. Then

f(F(TB)) =f(TF(B)) =f(F(B)T) = f(F(BT))

for all B G B(l2(G)). Hence T is a finite operator. Conversely, assume T is a

finite operator and suppose /is a state on B(l2(G)) such that/(^T) = f(TA)

for all A G B(l2(G)). It then follows that f(AB) = f(BA) for all A G
B(l2(G)) and B G C*(T). In particular, f(ugAu*) = f(A) for all A G
B(l2(G)) and g G G. Let M^ G B(l2(G)) be multiplication by <f> G /°°(G)

and define p on l°°(G) by p(<p) = f(M^). Then since M^ = ugM^u*, we have

that p(<pg) = p(<i>) for all g G G and p is a left-invariant mean on lœ(G); thus

G is amenable.

It is known that if T G 7? (77) is a finite operator, then there is a represen-

tation of C*(T) whose weak closure is a finite factor [15]. However, Proposi-

tion 3 shows that the converse is not true.

Corollary 4. There exists a nonfinite operator T which generates a type

ii x~jactor.

Proof. Let G be the free group on two generators c and d. We proceed as

in [10, p. 453]. Let uc = Ac + iBc and ud = Ad + iBd be the Hermitian

decompositions of uc and ud. There exist countable families of projections

Ecn, Fcn G {uc}" such that^lc G C*(Ecn: 1 < n) = the C*-algebra generated

by the'£c>„ and the identity, and Bc G C*(FC„: 1 < n). Then C*(Ecn, Fcn:

n > 1) is abelian and is generated as a Banach algebra by a countable family

of idempotents; hence by Rickart's Lemma C*(Ecn, Fcn: n > 1) = C*(HC)

for some self-adjoint operator 77c [14, p. 67]. Then u'c G C*(HC) G {uc}".
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Likewise there is a selfadjoint operator Hd such that ud E C*(Hd) G {ud}".

Let H = Hc + iHd. Then 77 G W*(G) and uc, ud E C*(H). Then C*(G)
G C*(H) G W*(G) and 77 generates a type II,-factor, but 77 is not a finite

operator by Proposition 3.

We remark that there exist amenable groups G such that C*(G) G C*(T)

G W*(T) for some operator T. In fact if G is the "rational ax + b" group

then such a T can be constructed by the same method as that used in

Corollary 4.

4. Finite operators. The following proposition was conjectured by J. P.

Williams [16, p. 279]. The proof uses the idea of Effros and Hahn [4, p. 25]

that was used in the proof of Proposition 2.

Proposition 5. Let A G 5(77) be such that there is a nonzero selfadjoint

linear functional f on 5(77) such that f (AB) = f(BA)for all B E 77(77). Then

A is a finite operator.

Proof. Let C = {T E B(H):f(TB) = f(BT) for all B E 77(77)}. Then it
is easy to see that C is a C*-subalgebra of 5(77) which contains A, hence

C*(A) G C. Let/ = /+ -?/-. Then as in the proof of Proposition 2 it follows

that /+ (UBU*) = /+ (B) and /" (UBU*) = f~ (B) for all U E U(C) and
B E 5(77). Thus f+(TB) = f+(BT) and f~(TB) = f~(BT) for all 5 G
5(77) and TEC, hence f+(AB) = f+(BA) and /"(AB) = f~(BA) for all
5 G 5(77). Since at least one of / + ,/~ must be nonzero, it follows that A

must be a finite operator.

For S,,S2 two subsets of 5(77) let [Si,S2] denote the linear span of the

commutators SXS2 - S2SX where S, G S,-,/'= 1,2. For A E 5(77) let 8A be

the inner derivation of 5(77) induced by A, 8A(B) = BA - AB, and let

R(84) be the range of ¿L.

Corollary 6. For an operator A E 5(77) the following are equivalent:

(1) A is finite,

(2) [C*(A), 5(77)] is not norm dense in 5(77),

(3) the linear span of R(8A) u R(8A.) is not norm dense in 5(77),

(4) the set of finite sums 1,(Xi - U,X, £/*) where each X¡ E B (77) and

U¡ E U(C*(A)) is not norm dense in 5(77).

Proof. The proof is immediate from Proposition 5 since the sets in (2), (3)

and (4) are *-stable sets and are hence not norm dense if and only if there is a

nonzero selfadjoint continuous linear functional which is zero on the set in

question.

The condition (2) was conjectured by Williams in [16]. Condition (3) should

be contrasted with Stampfli's result that R (8A) is never norm dense for any A

[13].
We now denote by Fin(77) the set of finite operators in 5(77). The

following two propositions concern representations of finite operators.

Proposition 7. Suppose TE 5(77) and it: C*(F)^5(77J is a *-

representation such that tr(T) E Fin(Hn). Then T E Fin(77).

Proof. Let tr0:  B (77) —> 5 (K) be the "extension" representation of ir,
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where 77, is a subspace of K and tr0(A)\Hv = tr(A) for all A G C*(T) [3,

2.10.2]. Let P be the projection of K onto 77,. Let g be a state of 7? (77,) such

that g(ir(T)S) = g(Sir(T)) for all S G 5(77,), and define h on 5(77) by
«(X) = g(Pir0(X)P\H„). Then /i is a state on 5(77) and since 77, reduces

tt0(T) it is easily seen that h(XT) = h(TX) for all x G B(H) and T G

Fin(/7).

For each positive integer n let R„(H) denote the set of operators on 77 that

have an «-dimensional reducing subspace. It is shown in [15] that R„(H)~ is

contained in Fin(77). Whether or not (J nRn(H) is dense in Fin(77) is an

open question. The following proposition is the analogue of Proposition 7 for

the set (U nR„(H)Y- We do not know if the irreducibility assumption in this

proposition can be omitted.

Proposition 8. Let T G 7?(77) and suppose -n: C*(T) —> B(H„) is an

irreducible *-representation such that tr(T) is in the norm closure of U nRn(H^)-

Then T is in the norm closure of U nR„(H).

Proof. We may assume that 77, is a subspace of 77. Let e > 0 be given and

choose A G 72(77,) such that ||w(T) - A\\ < e and A has a reducing sub-

space 770 of finite dimension n. Let E0 be the projection of 77 onto 770 and let

Xy, x2,. .. ,xn be an orthonormal basis for 770. Then by [2, Lemma, p. 342]

there exists a unitary U G 5(77) such that

||t/7i<y*;c,. - ir(B)x¡\\< e/flí

for each i, 1 < i < n, and B = T or T*. Then \\(UBU* - ir(B))E0\\ < e for

B = T or T* and we have

\\(UTU* - E0AE0)E0\\ = \\(UTU* - A)E0 + (AE0 - £^7i0)||

= \\(UTU* - A)E0\\

<\\(UTU* - v(T))E0\\ + \\(v{T) - A)E0\\ < 2$,

where we have used the fact that 770 reduces A. The same inequality also

holds for T* and A * in place of T and A. Hence

\\UTU* - (7v47i0|770 © E¿UTU*\E¿ )||

<\\(UTU* - (EqAE^Hq © Ej-UTU* [Ef ))E0\\

+ \\E0(UTU* - (EoAE0\H0 © E¿UTU*\E¿ ))E¿\\

< 2e + 2e.

Thus T is in the norm closure of (U  7? (77)/.

References

1. J. W. Bunce, Characterizations of amenable and strongly amenable C*-algebras, Pacific J.

Math. 43(1972), 563-572. MR47 #9298.

2. J. W. Bunce and J. A. Deddens, Subspace approximants and GCR operators, Indiana Univ.

Math. J. 24(1974), 341-349.

3. J. Dixmier, Les C*-algebres et leurs representations. Cahiers scientifiques, fase. 29, Gauthier-

Villars, Paris, 1964. MR30 # 1404.



FINITE OPERATORS AND AMENABLE C*-ALGEBRAS 151

4. E. G. Effros and F. Hahn, Locally compact transformation groups and C'-algebras, Mem.

Amer. Math. Soc. No. 75(1967). MR37 #2895.

5. F. P. Greenleaf, Invariant means on topological groups and their applications, Van Nostrand

Math. Studies, no. 16, Van Nostrand, Princeton, N.J., 1969. MR40 #4776.

6. B. E. Johnson, Cohomology in Banach algebras, Mem. Amer. Math. Soc. No. 127(1972).

7. C. Lance, On nuclear C*-algebras, J. Functional Analysis 12(1973), 157-176.

8. C. Pearcy and N. Salinas, Finite-dimensional representations of separable C*-algebras, Bull.

Amer. Math. Soc. 80(1974), 970-972.

9. J. R. Ringrose, A utomatic continuity of derivations of operator algebras, J. London Math. Soc.

(2) 5(1972), 432-438.
10. T. Saito, Generation of von Neumann algebras, Lectures on Operator Algebras, Lecture

Notes in Math., vol. 247, Springer-Verlag, Berlin and New York, 1972.

11. S. Sakai, C-algebras and W*-algebras, Springer-Verlag, New York, 1971.

12. J. T. Schwartz, W*-algebras, Gordon and Breach, New York, 1967. MR38 #547.

13. J. G. Stampfli, Derivations on ® (DC): The range, Illinois J. Math. 17(1973), 518-524. MR47
#7460.

14. D. Topping, Lectures on von Neumann algebras, Van Nostrand Reinhold, London, 1971.

15. J. P. Williams, Finite operators, Proc. Amer. Math. Soc. 26(1970), 129-136. MR41#9039.
16.   _ , On the range of a derivation, Pacific J. Math. 38(1971), 276-279. MR 46 #7923.

Department of Mathematics, University of Kansas, Lawrence, Kansas 66045


