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NOTIONS OF SPANNING SURFACE
EQUIVALENCE

JULIAN R. EISNER

Abstract.   We show that two natural notions of spanning surface equiva-

lence differ for minimal spanning surfaces of knots in S3.

1. Introduction. Every (tame) knot in S3 is spanned by a (tame) orientable

surface [8]; an orientable spanning surface of smallest possible genus is called

a minimal spanning surface. Spanning surfaces F and F' of a knot K in S3 are

weakly equivalent if there is an autohomeomorphism of S3 taking F to F' and

preserving the orientations of both S3 and K. The surfaces F and F' are

strongly equivalent if there is an isotopic deformation of S3, fixing K (through-

out the isotopy), and taking F to F'. Alford, Daigle, Lyon, Schaufele, and

Trotter have given examples of knots which have minimal spanning surfaces

F and F' which are not weakly equivalent [l]-[4], [6], [10]. We show here that

there are knots K possessing minimal spanning surfaces F and F which are

weakly equivalent but not strongly equivalent.

2. The construction. Write S3 = Ä3 U oo, and set

By = {(yi>yr>ys): y\ > °) u °°>  B2 = (Owwi):-.?! < °) u °°>

s2 = {iyuy2,y3Y y\ = 0} u »,

a = \{.y\>yi>yi)'-n = 0,-1 <^2 < 1,^3 = 0}

and x = (0,0,1). Let h be the orientation preserving autohomeomorphism of

S3 given by hiyx,y2,y3) = (-y,,-^,.^); note that hid) = a and that h

reverses the orientation of a. By [1], [2], we can find a knot k possessing

minimal spanning surfaces 5 and S' with 77, (S3 - 5 ) * 77, (5 - S'). We may

assume that k, S, and 5" lie in Bx and that k n S2 = S n S2 = S' n S2

= a. Let K be the composite knot k # /t(/c) = (/c U Kk)) - int (a), and set

F = S U /z(S') and F' = 5" U ¿(S); T7 and F' are minimal spanning surfac-

es of K [5, p. 141]. Since h2 = id, A(F) = /¡(S U /i(S')) *!*(^US'- F'.
Also, since h reverses the orientation of a, h preserves the orientation of K.

Therefore, F and F' are weakly equivalent. We will show, however, that F and

F' are not strongly equivalent.

3. Distinguishing between F and F'. We will prove that F and F' are not

strongly equivalent by demonstrating that if they were, it would then follow
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that mxiS3 - S,x) est mxiS3 - S',x), which is, by hypothesis, false. The fact

that mxiS3 - S,x) would be isomorphic to mxiS3 - S',x) if F and F' were

strongly equivalent will follow from a careful examination of the spaces and

groups involved in our construction, together with an application of the

algebraic consequences of the existence of a strong equivalence.

Let ux,u2, ox, and o2 he inclusion maps in the following commutative

diagram:

(Pi - K) K)

iS* - K)

(We let iA - B) denote the set of all points which are in A but not in B, even

when B is not a subset of A. Thus, for example, (S"2 - K) = iS2 minus two

points).) Letting n and n2 he the natural maps in the commutative diagram

Z = 7r1(S2 -K, x)

H,iS2 -K)

iu2)i>*

(w2'**

irliB2 -K.x)

* HxiB2 -K) = Z

and observing that n and (w2).„ are isomorphisms, we see that the homomor-

phism (w2)* has a left inverse v = n~x ° iiu2)„)~x ° n2, which abelianizes

mxiB2 - K,x). Letting <f>, be the identity homomorphism of mxiBx - K,x) to

itself and letting <f>2 : mx (52 - K, x) ->■ mx (5, - K, x) he the homomorphism

(w, )+ o v, we see that

"Pi ° ("l)* = (Mi)* =W*°'") ("2)* = <P2 ° ("2)*.

so that, by the Seifert-Van Kampen theorem, there is a homomorphism

<f>: mxiS — K,x) —» 7^(7?, — /<,x) such that <j> o iox)+ =(/>,= id and <j>

o (o2)+ = $2 = (Mi)* ° "• Since p abelianizes «j(Ä2 - K, x), we see that <j>

° io2)¡f kills the commutator subgroup of mxiB2 — K,x).

Now consider the following commutative diagram, in which all arrows are

given by inclusion:

iB, - S) -U (53 - F) — (B2 - h(S'))

(B, -K)-±* (S3 -K)*-*- (B2 - K)
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By the Seifert-Van Kampen theorem, <f> ° i^(*|(S3 - F,x)) is generated by

<b ° t, o iex)itlimxiBx - S,x)) and <p » », o (e2)*(wi(Ä2 _ A(5"),x)). Now

<#> ° '* ° (<?,)* = <¡> ° (»i)* ° Oi)* = id o (/.)* = (/j)*,

which, by Dehn's lemma and the loop theorem, is injective since S is minimal

(cf. [7, pp. 27-32] or [9]). Consequently

«P « i* o (ei)*M*i - S,x)) ~ mxiBx - S,x) « 77, (S3 - 5,x).

Also, <J> ° /'„, o (e2)# = <|> o (o2)* o (¡2)^ = 0, since the image of (/2)+ is in the

commutator subgroup of mxiB2 - K,x), which is killed by <p ° (o2)*. There-

fore, <b o i*imxiS3 - F,x)) tat mxiS3 - S,x). Similarly, letting /': (S3 - F')

-* iS3 - K) he the inclusion map, we have

4>oH%imxiS3-F',x))^ mxiS3-S',x).

Theorem. F and F' are not strongly equivalent.

Proof. Suppose the contrary. Then there is an isotopic deformation

/: S3 X I -> S3 such that, for each t, JtiK) = K, and 7,(F) = F'. Since

x £ iS3 - (F U F')), we may assume as well that Jx{x), = x. Then

iJx \S3 - K)* is the inner automorphism of mxiS3 — K,x) given by conjugation

by the element of mx (S3 - K, x) represented by the path of x during the isotopy

J. We see also that

iJx\S3 - KUu^iS3 - F,x))) = (i%(*i(S3 - F',x)),

since

JxiS3 - F) = iS3 - F').

Therefore, /„(tij(S3 - F,x)) and (í')*(wi(S3 - F',x)) are conjugate subgroups

of   mxiS3 — K,x).   Consequently

* o i, (tt, iS3 - F, x))     and      <í> ° (/')* («1 (S3 - F', x))

are conjugate subgroups of 77,(5, - K,x); in particular,

<í> o i^imxiS3 -F,x))^<¡>o ii%imxiS3 - F',x)),

or 77](S3 - S,x) ~ mx(S3 - S',x), a contradiction.
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