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ON QUOTIENTS OF MOVING AVERAGE PROCESSES
WITH INFINITE MEAN

MAREK KANTER1

Abstract. In this paper it is shown that one can estimate the sum of the

weights used to form a stationary moving average stochastic process based

on nonnegative random variables by taking the limit in probability of

suitable quotients, even when the random variables involved have infinite

expectation.

1. Introduction. Suppose we are given a two-sided infinite sequence X

= (Xk\k = 0, ±1, ±2, . . . ) of independent, identically distributed, nonnega-

tive random variables such that E(Xk ) = + oo for all k. For certain infinite

sequences of constants a = (ak\k = 0, ± 1, . . . ) it is possible to form the

moving average process

Yn  = Zj^n-kXfc
k

which clearly is a stationary process. It is known also to be an ergodic process

(see [2, p. 158]). However, the study of the ergodic properties of the process Y

is made difficult by the fact that E(\ Yn\) = oo. For instance the usual ergodic

theorem cannot be applied to study the behaviour of the normed sums

N-l2NnmlY„.

Suppose now that b = (bk\k = 0, ±1, ±2, . . . ) is another sequence of

constants such that it is possible to form the moving average process

Z„ = Zj b„ _ kXk.
k

The ratios 'S,"nZ'xYn/'ZnnZ^Zn have also been studied, but again with the

restriction that means are finite. We show in this paper that when considering

ratios as above, the restriction that means are finite can be lifted, and that by

fairly elementary arguments one can in fact prove

,; Z-fr„   =   1(a)

"™   2nn:X      2(6)

where the limit is taken in probability. (For any sequence a = (ak\k = 0, ± 1,

±2, . . . ) we let "2(a) = 1,kak. In order that the moving average processes Yn

and Zn exist it turns out that the sums "S.\ak\ and "S.\bk\ are finite.) The above
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statement, of course, is only asserted for 2(6) s* 0.

We will show that, unlike the usual ergodic theorems for stationary integra-

ble random variables, our result cannot be refined to provide a.s. conver-

gence.

Our work on this paper has been motivated by a previous study of

autoregressive stationary processes with infinite variance. (See [5].)

We end this introduction with some remarks on notation.

/ stands for the set of all two-sided sequences a = (ak\k = 0, ±1, ±2) of

real numbers.

/+ = [a\a G I; ak> 0 for all A:}.

/„ = [a\a G I; ak = 0 for |A:| sufficiently large).

/0+ = /0n/+.

/« = [a\a G I; 2k\ak\" < oo).
For a G Ia we define pa(a) = 2(tK|a. We note that pa(a + b) < pa(a) +

pa(b) if a G (0, 1].
5^ stands for that sequence a in /0+ whose coordinates are all zero except

for k = \, . . . , N where ak = 1. 8N stands for that sequence a in /0+ whose

coordinates are all zero except for k = — N, . . . , — 1 where ak = 1.

If a G I we define a+ to be that sequence c G I such that ck = ak if ak > 0

and ck = 0 if ak < 0. Similarly define a ~ to be that sequence d G I such that

dk = —akifak < 0 and dk = 0 if ak > 0. We note that a = a + — a ~ and that

P» = P> + ) + P>~ )•
If a, b G lx we define a * b G /' to be that sequence c in /' whose A:th term

ck is equal to 2/k _,£,-.
Finally, if a G I and X = (Xk\k = 0, ±1, ±2, . . . ) are random variables

such that 'ZkakXk converges in probability, we will write a ° X = 2*6^*. As

an example of our notation we rewrite H"„z"(2^„-¿Aj.) as (8N * a) ° X.

We can also write 'Z"„ZZxN(S.kan_kXk) as (8N * a) ° X. To spare the notation

we will state our theorems in terms of the random variables (8N * a) ° X

though they can just as easily be stated and proved for the random variables

(8N *a)°X.

2. Metric linear spaces associated with positive random variables.   Let

X = (Xk\k = 0, ±1, ±2, . . . ) be a two-sided infinite sequence of positive,

independent and identically distributed random variables. We define the

function px(s) on [0, oo) by

(2.1) F(e-^) = exp(-p^(i)).

We wish to define the random variable a ° X for vectors a G I. This cannot

be done for all a G I, so let us restrict our attention to those a G I for which

px(a) < oo, where px(a) = 2kpx(\ak\)- O^e shall denote this subset of / by

I*.)
It is clear from (2.1) that if a G l+ n lx then a ° X can be defined with

(2.2) £(e-("°*>) = exp(-Ma)).

For general a G lx, we write a = a+ — a~ as before and define a ° X

= a+ ° X — a~ ° X. (Note that a+ and a~ are in lx since px(-) is a

nondecreasing function on [0, oo).)

It is useful to keep the special case of positive stable random variables of



QUOTIENTS OF MOVING AVERAGE PROCESSES 283

index a E (0, 1) in mind throughout this discussion. In that case px(s) = Ks"

for s£[0, oo) where K is a positive constant (which we assume to be 1 for

convenience). Similarly, px turns out to be pa and lx is evidently Ia. (See [3]

for background material on positive stable random variables.)

Lemma 2.1. (lx, px) is a metric linear space. Furthermore for a, b E lx we

have \px(a + ) - px(b+ )| < px(b - a).

Proof. It is a well-known fact that p^ is concave on [0, oo) (see, e.g., [6, p.

54]). We conclude from this that p^ is subadditive on [0, oo) by arguments

such as in [4, p. 41]. It is in turn clear that px is a metric and lx is a linear

space.

The second assertion follows directly from the inequality \px(u* )—

Px(u+ )l < Px(lM _ v\) valid for u, v E R and which follows directly from
the fact that p^ is nondecreasing and subadditive on (0, oo).   Q.E.D.

Lemma 2.2. lx c /'.

Proof. If a E I+ and a ° X exists then a E / ' by an easy application of

the 3 series theorem [8, p. 237]. The rest is obvious.    Q.E.D.

We now list some facts which show how the metric px on lx interrelates

with the random variables a ° X. We note that a sequence of random

variables Vn converges to 0 in probability (written Vn —*p 0) if and only if

£(|K„[/1 -I- |Fj)-»0. We also note that Vn converges to +00 in probability

(written Vn ->p + 00) if and only if for all e > 0 and x > 0, P[ Vn < x] < e

for n sufficiently large.

Fact 2.1. For any e > 0, 38 > 0 such that px(a) < 8 implies

E\a° X\/(l +\a° X\) < e   for all a E lx.

For any e > 0 and x > 0 there exists an M > 0 such that for a E lx n /+

we have px(a) > M => P[a ° X < x] < e.

Fact 2.1 follows directly from (2.2). Fact 2.2 follows from the following
lemma which is of interest in itself.

Lemma 2.3. Let Vn and Wn be a sequence of nonnegative random variables

with V„ independent of Wn for. all « and Wn > 0 a.s. Let

E(e-^) = exp(-pK(s))   and   E(e~^) = exp(-p^(s))

for all s E (0, 00). Suppose limn_00(pw, (s)/pv (s)) is equal to 0 for all s E (0,

00). Then (Vn/Wn)^>p + 00.

Proof. For v > 0 and w > 0 we can write

(l + e/wr'-jT   we-»'e-°rdr.

It follows immediately that

E((l + (Vn/Wn))-X) = /    E(Wne-^)E(e-^) dr.

It is trivial to check that p^(r) is differentiable for all r > 0 and that

E{WHe-w-<) = p'wJ(r)exp(-pWn(r));
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hence we can write

/• 00

(2.3)£((1 + (VjWn))-x) = /    pV.ÍOexpí-p^^OjexPÍ-PK.ÍO) dr-
0

Let us define the function Kn: (0, oo) -» (0, oo) by
, , ,

Kn(PvM)) = PK(r)/pWn(r).

By the hypotheses of the theorem we know that Kn(s) -» + oo for all j £ (0,

oo). By a simple change of variables we rewrite (2.3) as

£((i + (F„/^jr') = (V^*^»^
•'o

and immediately conclude (by the Lebesgue dominated convergence

theorem) that £((1 + (Vn/Wn))-x)-+0. This implies that VjWn V + oo.

Q.E.D.
To obtain Fact 2.2 from Lemma 2.3 we simply note that if Vn and Wn are

positive random variables with Vn/Wn -^p + oo and Vn —>F + oo, then Vn —

Wn^p + oo.

The following sequence of lemmas interrelate the metric px on lx with the

convolution structure of lx. We note first the trivial fact that for a G lx we

have px(8N * a) < px(8N)px(a) which follows immediately from the subaddi-

tivity of px. (In the case of positive stable random variables we have the more

general inequality pa(a * b) < pa(a)pa(b) for 0 < a < 1 and a,b G Ia.)

From now on we assume that our random variables X = (Xk\k = 0,

± 1, . . . ) have been renormalized by division with a positive constant so as

to make p^(l) = 1 and hence px(8N) = N.

Lemma 2.4. Let a G lx with 2(a) > 0. Then

lim   N-xpx({8N*a)+) = pJ^(a)).
N—*oo x '

Proof. The lemma is easily verified for sequences a G l0. Now for an

arbitrary element a G lx and for e > 0 let ac G l0 have the property that

2(a) = 2(ae) and px(a - a) < e. We now compute

N~l\Px((8N *«)+) - Wp*(2(*))l

(2.4) < #~Vt(fiJV * «)+ ) - PX((SN * ae)+ )|

+ N-x\px((8N*at)+)-Npx^(ae)\.

By Lemma 2.1 we can bound the first term on the right-hand side of (2.4)

by N ~xpx(8N * (a - aj) which is less than or equal to N ~xpx(8N)px(a — ae).

Since px(8N) = N we conclude that the first term on the right-hand side of

(2.4) is dominated by e. If we now take lim sup^^.^ of both sides of (2.4),

then (noting that

lim sup N-x\Px((8N * ay ) - AT^(2(ae))| = 0
^-»00

since a£ G l0) we conclude that

lim sup N-x\px((8N*a)+)- ÀVPjr(2(«))l < e.
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Since e > 0 was arbitrary, we get the required conclusion.    Q.E.D.

The same reasoning as in Lemma 2.4 demonstrates the following fact:

Lemma 2.5. Let a E lx with 2(a) > 0. Then

Jim   N~lPx(8N *a) = px(^(a)).

Corollary 2.1. Let a e lx with 2(a) > 0. Then

Jim   px((8N * a)+ )/px((8N * a)~ ) = +oo.
/V—+00

Proof. Just remember that

Px((8N * a)) = px((8N *a)+) + px((8N * a)~ )

and apply Lemmas 2.4 and 2.5.    Q.E.D.

3. The main theorem.

Theorem 3.1. Let X = (Xk\k = 0, ± 1, . . . ) be a two-sided sequence of

positive, identically distributed, independent random variables. Let a, b E lx

with 2(¿) i= 0. Then

,.        (*N*a)°X      2(a)
(3J) lim    7*-r\-v = ^7TV

TV-«.   (8N * b) ° X      2(6)

where the limit is taken in probability.

Proof. We first demonstrate the theorem in the special case when all the

coordinates bn of b = (bn) are nonnegative. In that case for any real s we can

write

(3.2)
(8N * a) ° X

(8N*b)°X>S
= P[(8N * (a - sb) o X) > 0].

We shall first show that ii s > 2(a)/2(¿>) then the right-hand side of (3.2)

tends to 0 with N.

In fact, 2(a - sb) < 0, hence px((8N * (a - sb))~) -> + oo by Lemma 2.4

applied to (sb - a); also px((8N * (a - sb))~)/px((8N * (a - sb))+) tends to

+ oo with N by Corollary 2.1 applied to sb - a. We conclude that (8N * (a -

sb)) ° X tends to - oo in probability by Fact 2.2 applied to (sb - a), and

hence that the left-hand side of (3.2) tends to 0 with N.

In a similar way, we can show that if s < 2(a)/2(¿>) then

P[((8N * a) ° X)/((8N * b) ° X) < s] tends to 0 as N -> oo. We conclude that

lim   (8N * a) o X/ (8N * b) ° X = 2 (a)/ 2 (*)
TV—»oo

in the special case when all the coordinates of b are nonnegative.

To prove the theorem in full generality we invert our results so far; i.e. we

know that for 2(a) ¥= 0 and b with all coordinates nonnegative we have

lim   (8N *b)°X/ (8N * a) » X = 2 (b)/ 2 (a)
TV—»oo

Both sides of the last equation are linear in b; hence the restriction on b can

be removed by linearity. The general case now follows by reinverting with the
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exception of the special case that 2(a) = 0. This special case is taken care of

by applying (3.1) successively to the positive part of a, and then to the

negative part of a, and then using the fact that (3.1) is linear in a. Q.E.D.

Remark. Theorem 3.1 is true if X¡ are only assumed nonnegative (and not

identically 0). This follows since P[(8N * c) ° X = 0] evidently tends to 0 for

c £ /* n I*, c ¥* 0. The details are straightforward.

4. On almost sure convergence. In this section we will show the impossibil-

ity of proving almost sure convergence in Theorem 3.1, in the special case

when the random variables Xk are all positive stable of index a in (0, 1). By

looking at the special case when a is 5, and b is 8X "shifted" forward by one

we see that in order to be able to prove a.s. convergence in Theorem 3.1 it is

necessary that

N

im   XN+X/ 2,^=0   a.s.(4.1)
N-*O0

Now by the generalized Borel-Cantelli Lemma (see [1, p. 96]) we know that

(4.1) holds only if

(4.2) 2P
i

%N+ 1  > 2j ■*lfc*l» • • • ' Xfi <  OO

almost surely. Now P [XN+, > x] ~ x  ° for x large by [3, p. 424], hence (4.2)

is equivalent to the a.s. convergence of

-ß

(4.3) S (ix)
N=l \¡=l       /

when ß = a. We will show that in fact (4.3) diverges when ß = a. (Note that

by [9, p. 758] we know that (4.3) converges for ß > a and diverges for

ß<a.)

To see that (4.3) diverges when ß = a we remember first that the series

"2-Ñ-2(N log (N))~l diverges. We note also that

j*N

2 a-,.
(«i

> i
A/log/V

= P ^X^iNlogN)'/"

= P[XX <(\ogN)x/a]

and that the last expression tends to 1 as N -> oo. We conclude by Levy [7,

Theorem 74.2, p. 297] that the series in (4.3) is a.s. divergent if ß = a.
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