MONIC AND MONIC FREE IDEALS IN A POLYNOMIAL SEMIRING

LOUIS DALE

ABSTRACT. Two classes of ideals are introduced in a polynomial semiring S[x], where S is a commutative semiring with an identity. A structure theorem is given for each class.

- 1. Introduction. While much is known about ideals in rings and polynomial rings, little is known about ideals in polynomial semirings. In this paper, two classes of ideals in a polynomial semiring will be explored and a structure theorem for each class will be presented.
- 2. Fundamentals. There are different definitions of a semiring appearing in the literature. However, the definition used in [1] will be used throughout this paper. This definition is given as follows:
- 2.1. Definition. A set S together with two binary operations called addition (+) and multiplication (\cdot) will be called a semiring provided (S, +) is an abelian semigroup with a zero, (S, \cdot) is a semigroup, and multiplication distributes over addition from the left and from the right.

A semiring S is said to be commutative if (S, \cdot) is a commutative semigroup. A semiring S is said to have an identity if there exists $1 \in S$ such that $1 \cdot x = x \cdot 1$ for each $x \in S$.

2.2. DEFINITION. A semiring S is said to be a strict semiring if $a \in S$, $b \in S$ and a + b = 0 imply a = b = 0.

The set of nonnegative integers under the usual operations of addition and multiplication is a strict semiring.

- 2.3. Definition. A subset I of a semiring S will be called an ideal in S if I is an additive subsemigroup of (S, +), $IS \subset I$ and $SI \subset I$.
- 2.4. DEFINITION. An ideal I in a semiring S will be called a k-ideal if $a \in I$, $b \in S$ and $a + b \in I$ imply $b \in I$.
- 2.5. DEFINITION. An ideal M in S[x], where S is a commutative semiring with an identity, will be called monic if $\sum a_i x^i \in M$ implies $a_i x^i \in M$ for each $i \in \{0, 1, 2, ..., n\}$.
- 2.6. DEFINITION. An ideal F in S[x], where S is a commutative semiring with an identity, will be called monic free if M is a monic ideal such that $M \subset F$

Presented to the Society, March 20, 1975 under the title Monic free ideals in a polynomial semiring; received by the editors September 23, 1974 and, in revised form, January 7, 1975.

AMS (MOS) subject classifications (1970). Primary 16-02, 16A66; Secondary 16A78.

Key words and phrases. Strict semiring, monic ideals, monic free ideals, k-ideals, coefficient ideals, monic closure, mixed ideals.

46 LOUIS DALE

then $M = \{0\}$. Ideals which are neither monic nor monic free will be called mixed.

2.7. Examples. Let Z be the integers and Z[x] the ring of polynomials over Z. Let $ax^i \in Z[x]$ where i > 0 and $a \neq 0$. Then, clearly (ax^i) is a monic ideal in Z[x]. Now let F = (x + 1) be the ideal in Z[x] generated by x + 1. Then F is a monic free ideal in Z[x]. To see this, let M be a monic ideal such that $M \subset F$. If $M \neq 0$, then M being monic assures the existence of an element $ax^i \in M$ such that $a \neq 0$ and i > 0. Without loss of generality, we may assume that i is even. Thus, $ax^i \in F$, whence $ax^i = g(x)(x + 1)$ for some polynomial g(x) in Z[x]. Replacing x by -1 yields a = 0, a contradiction. Hence M = 0 and F is monic free.

Throughout this paper, unless otherwise stated, S will be a commutative semiring with an identity and S[x] will be the semiring of polynomials over S in the indeterminate x.

- 3. Monic ideals. Let $\{I_n\}$ be an ascending chain of ideals in a semiring S and $I^* = \{\sum a_i x^i \in S[x] | a_i \in I_i\}$.
 - 3.1. THEOREM. I^* is a monic ideal in S[x].

PROOF. Let $f = a_n x^n + \dots + a_0 \in I^*$, $g = b_m x^m + \dots + b_0 \in I^*$, and $h = c_k x^k + \dots + c_0 \in S[x]$. It follows from $(a_i + b_i) \in I_i$ that $f + g \in I^*$. Consider the product $hf = \sum p_t x^t$, where $p_t = \sum c_i a_j$ for i + j = t. Clearly $j \leqslant t$ and consequently, $a_j \in I_t$ since $\{I_n\}$ is an ascending chain. Hence $p_t = \sum c_i a_j \in I_t$ and $hf \in I^*$. Since $f \in I^*$, it follows that $a_i \in I_i$ and consequently $a_i x^i \in I^*$.

At this point the following question may be asked: Does every monic ideal in S[x] come from an ascending chain of ideals in S? To answer this question, a method of constructing an ascending chain of ideals in S from a given ideal in S[x] is needed.

Let A be an ideal in S[x] and $A_i = \{a \in S | \text{ there is an } f \in A \text{ such that } ax^i \text{ is a term of } f\}$.

3.2. THEOREM. If A is an ideal in S[x], then $\{A_n\}$ is an ascending chain of ideals in S.

PROOF. For $a \in A_i$ and $b \in A_i$ there are polynomials $f \in A$ and $g \in A$ such that ax^i and bx^i are terms of f and g respectively. Consequently, $f+g \in A$, $(a+b)x^i$ is a term of f+g and $a+b \in A_i$. If $c \in S$, then $cf \in A$ and it follows that cax^i is a term of cf. Consequently $ca \in A_i$. Since $cf \in A_i$, it is clear that $cf \in A_i$ is a term of $cf \in A_i$ and $cf \in A_i$.

For an ideal A in S[x], the ascending chain of ideals $\{A_n\}$ in S will be called coefficient ideals. Let $A^* = \{\sum a_i x^i \in S[x] | a_i \in A_i\}$. Then $A \subset A^*$ and Theorem 3.1 assures that A^* is a monic ideal in S[x].

3.3. THEOREM. An ideal A in S[x] is monic if and only if $A = A^*$.

PROOF. Theorem 3.1 assures that A is monic if $A = A^*$. Suppose A is monic and $f = a_n x^n + \cdots + a_0 \in A^*$. Then $a_i \in A_i$ and there is a polynomial $g_i \in A$ such that ax^i is a term of g_i . A being monic assures that $a_i x^i \in A$.

Consequently $f \in A$ and $A^* \subset A$. From $A \subset A^*$ it follows that $A = A^*$.

This theorem assures that all monic ideals in S[x] can be structured from ascending chains of ideals in S. What about monic k-ideals?

3.4. THEOREM. A monic ideal M in S[x] is a k-ideal if and only if M_i is a k-ideal in S for each i.

PROOF. Suppose M is a monic k-ideal in S[x]. Then $M = M^*$. Let $a \in M_i$, $b \in S$ and $a + b \in M_i$. Then $ax^i \in M$, $(a + b)x^i = ax^i + bx^i \in M$ and $bx^i \in M$ since M is a k-ideal. Consequently $b \in M_i$ and M_i is a k-ideal. Conversely, suppose each M_i is a k-ideal, $f = a_n x^n + \cdots + a_0 \in M$, $g = b_m x^m + \cdots + b_0 \in S[x]$ and $f + g \in M$. Then $a_i \in M_i$, $a_i + b_i \in M_i$ and it follows that $b_i \in M_i$. Consequently $b_i x^i \in M$ and $g \in M$. Therefore M is a k-ideal.

3.5. DEFINITION. For an ideal A in S[x], the set $\overline{A} = \bigcap \{M | M \text{ is monic and } A \subset M\}$ will be called the monic closure of A.

It is evident that for any ideal A in S[x], \overline{A} is a monic ideal and consequently $\overline{A} = A^*$. It is easy to show that if $A \subset B$, then $\overline{A} \subset \overline{B}$.

3.6. THEOREM. If A and B are ideals in S[x], then $\overline{A} \cap \overline{B} = \overline{A \cap B}$.

PROOF. $\overline{A} \cap \overline{B} \subset \overline{A \cap B}$ is clear. Let $f = \sum a_i x^i \in \overline{A \cap B}$. Since $\overline{A \cap B}$ is monic, $a_i x^i \in \overline{A \cap B}$. Thus there is a polynomial $g_i \in A \cap B$ such that $a_i x^i$ is a term of g_i . Now $g_i \in A$ and $g_i \in B$. Hence $a_i x^i \in \overline{A}$ and $a_i x^i \in \overline{B}$ and it follows that $a_i x^i \in \overline{A} \cap \overline{B}$. Consequently $f = \sum a_i x^i \in \overline{A} \cap \overline{B}$ and $\overline{A \cap B} \subset \overline{A} \cap \overline{B}$. Whence $\overline{A} \cap \overline{B} = \overline{A \cap B}$.

- 4. Monic free ideals. Of the monic free ideals in a polynomial semiring, the monic free k-ideals are the most interesting. The following lemma is important to the study of monic free k-ideals.
- 4.1. Lemma. If A is a k-ideal in S[x], $f = a_n x^n + \cdots + a_0 \in A$, and τ is a nonnegative integer, then

$$(a_n x^n + \dots + a_{i+1} x^{i+1} + a_{i-1} x^{i-1} + \dots + a_0)^{2\tau+1} + (a_i x^i)^{2\tau+1} \in A.$$

PROOF. By induction on τ . Let f=h+g where $h=a_nx^n+\cdots+a_{i+1}x^{i+1}+a_{i-1}x^{i-1}+\cdots+a_0$ and $g=a_ix^i$. Assume that $h^{2\tau+1}+g^{2\tau+1}\in A$. Since A is an ideal it is clear that $[h^{2\tau+2}+g^{2\tau+2}]f\in A$ and $[h^{2\tau+1}+g^{2\tau+1}]hg\in A$. Then

$$[h^{2\tau+2} + g^{2\tau+2}]f = [h^{2\tau+2} + g^{2\tau+2}](g+h)$$

= $h^{2\tau+3} + g^{2\tau+3} + [h^{2\tau+1} + g^{2\tau+1}]hg$.

Consequently $h^{2\tau+3}+g^{2\tau+3}\in A$, since A is a k-ideal, and $h^{2\tau+1}+g^{2\tau+1}\in A$ for all nonnegative integers τ .

4.2. THEOREM. Let S be a strict semiring. A monic free ideal F in S[x] with a finite basis is not a k-ideal.

PROOF. Suppose that the theorem is false and F is a monic free k-ideal with

a finite basis $B = \{g_1, g_2, \dots, g_n\}$. Let $\Delta : S[x] \to Z^+$ be a function defined as follows: (1) if $h = b_n x^n + b_{n-p} x^{n-p} + \dots + b_0$ has degree n and $b_{n-p} \neq 0$, then $\Delta(h) = p$, (2) if $h = ax^n$, $a \neq 0$, then $\Delta(h) = n$ and (3) if h = 0, then $\Delta(h) = 0$. Now let $\Delta(g_i) = c_i$. Since F is monic free, g_i contains at least two nonzero terms and consequently $c_i \geq 1$. Suppose $c = \max\{c_1, c_2, \dots, c_n\}$ and consider $f = a_n x^n + a_{n-p} x^{n-p} + \dots + a_0 \in F$. Clearly $\Delta(f) = p$ and it follows from Lemma 4.1 that $f_\tau = (a_n x^n)^{2\tau+1} + (a_{n-p} x^{n-p} + \dots + a_0)^{2\tau+1} \in F$ for each nonnegative integer τ . Since p is fixed and $\Delta(f_\tau) = (2\tau + 1)p$, the sequence $\{(2\tau + 1)p\}$ is an increasing sequence of integers. Consequently, there is a λ such that $\Delta(f_\lambda) = (2\lambda + 1)p > c$. Also $f_\lambda \in F$ and B a basis for F assures that

(1)
$$f_{\lambda} = (a_n x^n)^{2\lambda+1} + (a_{n-n} x^{n-p} + \dots + a_0)^{2\lambda+1} = h_1 g_1 + \dots + h_n g_n$$

for $h_i \in S[x]$. At least one of the products, say $h_i g_i$ must produce a term of degree $(2\lambda+1)n$, since $(a_n x^n)^{2\lambda+1}$ appears on the left side of (1). From $\Delta(g_i) = c_i$ it follows that $g_i = b_m x^m + b_{m-c_i} x^{m-c_i} + \cdots + b_0$. Moreover, h_i must have a term of the form $dx^{(2\lambda+1)n-m}$ and $dx^{(2\lambda+1)n-m}g_i = db_m x^{(2\lambda+1)n} + db_{m-c_i} x^{(2\lambda+1)n-c_i} + \cdots + db_0 x^{(2\lambda+1)n-m}$ is part of the product $h_i g_i$. Since S is a strict semiring, none of the terms in any of these products can vanish. Consequently the right side of (1) contains a term of degree $(2\lambda+1)n-c_i$. A term of this degree is guaranteed because g_i must contain at least two nonzero terms. Since $(2\lambda+1)p>c\geqslant c_i$, it follows that

(2)
$$(2\lambda + 1)n > (2\lambda + 1)n - c_i \ge (2\lambda + 1)n - c > (2\lambda + 1)n - (2\lambda + 1)p$$

$$= (2\lambda + 1)(n - p).$$

The second highest term on the left side of (1) is $(2\lambda + 1)(n - p)$. Hence a term of degree $(2\lambda + 1)n - c_i$ cannot appear on the left side of (1) because of (2), a contradiction.

4.3. COROLLARY. Let S be a strict semiring. If F is a monic free k-ideal in S[x], then every basis for F is infinite.

The above results make it possible to prove the following structure theorem for monic free k-ideals in S[x], where S is a strict semiring.

4.4. THEOREM. Let S be a strict semiring. If F is a monic free k-ideal in S[x], then $F = \bigcup F_{\alpha}$ where $\{F_{\alpha}\}$ is a proper ascending chain of ideals.

PROOF. Corollary 4.3 assures that F has an infinite basis, say, $B = \{g_{\alpha}\}$ for $\alpha \in A$. Well order the elements of B and let $F_0 = (g_0)$ and $F_{\alpha} = \sum_{\gamma < \alpha} F_{\gamma} + (g_{\alpha})$. It is easy to see that $\{F_{\alpha}\}$ is a proper ascending chain of ideals and $F = \bigcup F_{\alpha}$.

4.5. EXAMPLE. Consider the integers Z and the nonnegative integers Z^+ . Clearly Z is a semiring and Z^+ is a strict semiring. Define a mapping $\eta\colon Z^+[x]\to Z[i],\ i=\sqrt{-1}$, by $\eta(f(x))=f(i)$. It is clear that η is a semiring homomorphism and that $F=\ker\eta$ is a k-ideal in Z^+ . Let M be a monic ideal such that $M\subset F$. If $ax'\in M$, then $ax'\in F$ and $\eta(ax')=ai'=0$. Hence a=0 and it follows that ax'=0. Consequently M=0 and F is monic free.

Now let $A_0 = (x^2 + 1)$, $A_1 = (x^6 + 1) + A_0$, ..., $A_n = (x^{4n+2} + 1) + A_{n-1}$, ..., and let $A = \bigcup A_i$. Clearly $\{A_i\}$ is a proper ascending chain of ideals in $Z^+[x]$. If $f(x) \in A$, then there exists p such that $f(x) \in A_p$ and it follows that $f(x) = (x^2 + 1)f_0(x) + \cdots + (x^{4p+2} + 1)f_p(x)$. Further,

$$\eta(f(x)) = f(i) = (i^2 + 1)f_0(i) + \dots + (i^{4p+2} + 1)f_p(i)$$
$$= 0 \cdot f_0(i) + \dots + 0 \cdot f_p(i) = 0,$$

and it follows that $f(x) \in F$. Consequently, $A \subset F$. Now suppose $f(x) = a_n x^n + \cdots + a_0 \in F$. Then $\eta(f(x)) = f(i) = 0$. Write $f(x) = f_1(x) + f_2(x)$, where $f_1(x)$ has only odd degree terms and $f_2(x)$ has only even degree terms. It follows from f(i) = 0 that $f_1(i) = 0$ and $f_2(i) = 0$. Using this and the fact that the coefficients of f(x) are nonnegative integers, it is straightforward to show, by rearranging terms and factoring, that $f(x) = (x^2 + 1)g_0(x) + \cdots + (x^{4t+1} + 1)g_t(x)$, where $g_i(x) \in Z^+[x]$. Hence $f(x) \in A$ and $F \subset A$. Consequently A = F. Thus F is a monic free k-ideal with an infinite basis.

Next, let N = (x + 1) be the ideal in $Z^+[x]$ generated by x + 1. It follows from Example 2.7 that N is monic free in $Z^+[x]$. Thus N is a monic free ideal with a finite basis. Now assume that N is a k-ideal. It is clear that $(x + 1)^2(x + 1) = (x + 1)^3 \in N$ and $3x(x + 1) \in N$. Consequently,

$$(x + 1)^3 = x^3 + 3x^2 + 3x + 1 = x^3 + 1 + 3x(x + 1)$$

and $x^3 + 1 \in N$. But this gives $x^3 + 1 = g(x)(x + 1)$, for some $g(x) \in Z^+[x]$, which is impossible. Thus N is not a k-ideal.

- 5. Mixed ideals. When E is a mixed ideal in S[x] one can consider the monic part of E and the monic free part of E. While E may contain many monic ideals, it also contains a "largest" monic ideal.
- 5.1. DEFINITION. When E is a mixed ideal in S[x] the set $E^0 = \sum \{M_{\alpha} | M_{\alpha} \text{ is monic and } M_{\alpha} \subset E\}$ will be called the monic interior of E.

Obviously E^0 is a monic ideal in S[x] and it follows from the definition of E^0 that E^0 is the maximal monic ideal contained in E. Also since E is mixed, $E^0 \neq E$.

- 5.2. DEFINITION. When E is a mixed ideal in S[x] the set $bE = E E^0$ will be called the boundary of E.
- 5.3. THEOREM. Let S be a strict semiring. If E is a mixed ideal in S[x] then $E = E_1 \cup E_2$ where E_1 is the maximal monic ideal contained in E and E_2 is monic free.

PROOF. Since $E_1 = E^0$, it only remains to show that E_2 is monic free. Let $E_2 = (bE)$ be the ideal generated by bE. To show that E_2 is monic free it is sufficient to show that the ideal (bE) contains no nonzero elements of the form ax^i . Observe that the boundary bE can contain no term of the form ax^i since (ax^i) would be a monic ideal contained in E and $ax^i \in (ax^i) \subset E^0$. This is impossible since $bE \cap E^0 = \emptyset$. Consequently, the ideal (bE), being in a polynomial semiring, can contain no term of the form ax^i since bE is a basis for (bE) and S is a strict semiring. Thus E_2 is monic free.

50 LOUIS DALE

It is noted here that for a mixed ideal in S[x] the ascending chain $E^0 \subset E \subset \overline{E}$ is always proper.

REFERENCE

1. P. J. Allen, A fundamental theorem of homomorphisms for semirings, Proc. Amer. Math. Soc. 21 (1969), 412-416. MR 38 #5856.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ALABAMA IN BIRMINGHAM, BIRMINGHAM, ALABAMA 35233