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MONIC AND MONIC FREE IDEALS IN A

POLYNOMIAL SEMIRING

LOUIS DALE

Abstract. Two classes of ideals are introduced in a polynomial semiring

S[x], where S is a commutative semiring with an identity. A structure

theorem is given for each class.

1. Introduction. While much is known about ideals in rings and polynomial

rings, little is known about ideals in polynomial semirings. In this paper, two

classes of ideals in a polynomial semiring will be explored and a structure

theorem for each class will be presented.

2. Fundamentals. There are different definitions of a semiring appearing in

the literature. However, the definition used in [1] will be used throughout this

paper. This definition is given as follows:

2.1. Definition. A set S together with two binary operations called addition

(+) and multiplication (•) will be called a semiring provided (S, +) is an

abelian semigroup with a zero, (S, ■) is a semigroup, and multiplication

distributes over addition from the left and from the right.

A semiring S is said to be commutative if (S, ■) is a commutative semigroup.

A semiring S is said to have an identity if there exists 1 G S such that

\ ■ x = x ■ \ íot each x E S.

2.2. Definition. A semiring 5" is said to be a strict semiring if a E S, b E S

and a + b = 0 imply a = b = 0.

The set of nonnegative integers under the usual operations of addition and

multiplication is a strict semiring.

2.3. Definition. A subset / of a semiring S will be called an ideal in S if /

is an additive subsemigroup of (S, +), IS E I and SI C /.

2.4. Definition. An ideal / in a semiring 5 will be called a /c-ideal if

a E I, b E S and a + b E I imply b E I.

2.5. Definition. An ideal M in S[x], where S is a commutative semiring

with an identity, will be called monic if 2 o¡x' E M implies a¡x' E M for

each i E {0,1,2,... ,n).

2.6. Definition. An ideal Fin S[x], where S is a commutative semiring with

an identity, will be called monic free if M is a monic ideal such that M E F
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then M = {0}. Ideals which are neither monic nor monic free will be called

mixed.

2.7. Examples. Let Z be the integers and Z[x] the ring of polynomials over

Z. Let ax' G Z[x] where i > 0 and a ¥= 0. Then, clearly (ax') is a monic ideal

in Z[x]. Now let F = (x + 1) be the ideal in Z[x] generated by x + 1. Then

F is a monic free ideal in Z[x\. To see this, let M be a monic ideal such that

M G F. If M ^ 0, then A/ being monic assures the existence of an element

ax' G M such that a ¥= 0 and i > 0. Without loss of generality, we may

assume that i is even. Thus, ax' G F, whence ax' = g(x)(x + 1) for some

polynomial g(x) in Z[x]. Replacing x by — 1 yields a = 0, a contradiction.

Hence M = 0 and F is monic free.

Throughout this paper, unless otherwise stated, S" will be a commutative

semiring with an identity and S[x] will be the semiring of polynomials over S

in the indeterminate x.

3. Monic ideals. Let {/„} be an ascending chain of ideals in a semiring S and

/* = {2 ihx1 G S[x]\a¡ G /,}.

3.1. Theorem. /* is a monic ideal in S[x].

Proof. Let / = anx" + ■ ■ ■ + a0 G I*, g = bmxm + ■ • ■ + b0 G I*, and

h = ckxk + •■■ + c0 G S[x]. It follows from (a¡ + b¡) G I¡ that/4- g G I*.

Consider the product hf = 2 P¡ x', where p, = 2 c¡aj for i + j = t. Clearly

j < t and consequently, a, G /, since {/„} is an ascending chain. Hence

Pt = 2 c,aj G I, and hf G I*. Since f G I*, it follows that a, G I¡ and

consequently axx' G I*.

At this point the following question may be asked: Does every monic ideal

in S[x] come from an ascending chain of ideals in S"? To answer this question,

a method of constructing an ascending chain of ideals in S from a given ideal

in S[x] is needed.

Let A be an ideal in S[x] and A¡ = {a G S\ there is an/ G A such that ax'

is a term of/}.

3.2. Theorem. 7/^4 ¿s a« ideal in S[x], then {An} is an ascending chain of ideals

in S.

Proof. For a G A¡ and b G A¡ there are polynomials f G A and g G A

such that ax' and bx' are terms of / and g respectively. Consequently,

f + g G A, (a + b)x' is a term of / + g and a + b G At-. If c G S, then

cf G A and it follows that cax' is a term of c/. Consequently ca G A¡. Since

x/ G A, it is clear that ax' + x is a term of x/and /I, C /1, + 1.

For an ideal A in S[x], the ascending chain of ideals {An}'m S will be called

coefficient ideals. Let A* = {2 a¡x' G S[x]\a¡ G A¡). Then A G A* and

Theorem 3.1 assures that A* is a monic ideal in S[x].

3.3. Theorem. ^« /¿fez/ A in S[x] is monic if and only if A = A*.

Proof. Theorem 3.1 assures that A is monic if A = A*. Suppose A is monic

and / = a„x" + • ■ ■ + a0 G A*. Then a¡ G A¡ and there is a polynomial

g, G /I such that ax' is a term of g,. A being monic assures that a¡x' G A.
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Consequently/ G A and A* E A. From A C A* it follows that A = At*.

This theorem assures that all monic ideals in S[x] can be structured from

ascending chains of ideals in S. What about monic /V-ideals?

3.4. Theorem. A monic ideal M in S[x] is a k-ideal if and only if M¡ is a k-

ideal in S for each i.

Proof. Suppose M is a monic /c-ideal in S[x]. Then M = M*. Let

a E M¡,b E S and a + b G M¡. Then ax' E M, (a + b)x' = ax' + bx'

E M and bx' E M since M is a &-ideal. Consequently b E M¡ and M¡ is a k-

ideal. Conversely, suppose each M¡ is a &-ideal, / = a„x" + ■ ■ ■ + a0 E M, g

= bmxm + ■ ■ ■ + b0 G S[x] and / + g E M. Then a¡ E M¡, a¡ + b¡ G M¡

and it follows that b¡ E M¡. Consequently b¡ x' E M and g E M. Therefore

M is a £-ideal.

3.5. Definition. For an ideal A in S[x], the set A = D {M\M is monic and

A C M) will be called the monic closure of A.

It is evident that for any ideal A in S[x], A is a monic ideal and

consequently A = A*. It is easy to show that if A E B, then A E B.

3.6. Theorem. If A and B are ideals in S[x], then A n B =A n B.

Proof. JnSC ZTTß is clear. Let/ = 2 a,*' G ^ n B. Since X77~B
is monic, a¡x' E A C\ B. Thus there is a polynomial g, E ^ n ß such that

a¡x' is a term of g¡. Now g. G A and g, G 5. Hence a¡x' G ^4 and a¡x' G 5

and it follows that a,*' £ Jnl Consequently / = 2fl,x' G ̂ ~ n Fand

A c\ B EÄ C]B. Whence Ä f)B =A~tTb.

4. Monic free ideals. Of the monic free ideals in a polynomial semiring, the

monic free /c-ideals are the most interesting. The following lemma is important

to the study of monic free A>ideals.

4.1. Lemma. If A is a k-ideal in S[x], f = anx" + • • • + a0 E A, and r is a

nonnegative integer, then

(anxn + ■■■ + ai+xxi+x + a,-,*'-1 + ■ ■ • + a0)2T+1 + (aixi)2r+l E A.

Proof. By induction on t. Let/ = h + g where h = a„x" + ■ ■ ■ + ai+xx' + x

+ a¡_xx'~x + • ■ • + a0 and g = a¡x'. Assume that h2r+x + g2r+1 G A. Since

A is an ideal it is clear that [h2r+2 + g2r+2]f E A and [h2r+x + g2r+1 ]hg E A.

Then

[hlT+2 + g2T+2]f = [h2T+2 + glT+2](g + h)

= h2T+3 + g2T+3 + [/*2t+1 + g2r+x]hg.

Consequently h2r+3 + g2r+3 G A, since A is a fc-ideal, and h2j+x + g2r+x G A

for all nonnegative integers t.

4.2. Theorem. Let S be a strict semiring. A monic free ideal F in S[x] with a

finite basis is not a k-ideal.

Proof. Suppose that the theorem is false and F is a monic free &-ideal with
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a finite basis B = {g, ,g2,... ,g„}. Let A: S[x] -* Z+ be a function defined as

follows: (1) if h = bnx" + bn_pxn~p + ■ ■ ■ + b0 has degree n and bn_p ¥= 0,

then A(A) = p, (2) if h = ax", a ¥= 0, then A(A) = n and (3) if A = 0, then
A(A) = 0. Now let A(g,) = c¡. Since F is monic free, g, contains at least two

nonzero terms and consequently c¡ > 1. Suppose c = max{q,c2,... ,c„} and

consider / = a„x" + an_pxn~p + ■ ■ ■ + an G F. Clearly A(/) = p and it fol-

lows from Lemma 4.1 thatjÇ = (a„x")2T+Y + (an_px"~p + ■■■ + a0)2r+l G F

for each nonnegative integer t. Since p is fixed and A(/) = (2t + \)p, the

sequence {(2t + \)p) is an increasing sequence of integers. Consequently,

there is a À such that A(/A) = (2À + \)p > c. Also/A G F and B a basis for

F assures that

(1)   /A = («„x")2X+1 + (an_px"-P +■■■ + a0)2X+1 = hxgx + ■ ■ ■ + hngn

for h¡ G S[x]. At least one of the products, say h¡g¡ must produce a term of

degree (2Â + \)n, since (anx") + appears on the left side of (1). From

A(g,) = c, it follows that g, = bmxm + bm_cxm~Ci + ■■■ + b0. Moreover, h,

must have a term of the form dxi2X+x)"-m and ¿/x(2A+l)"-mg, = dbmx(2X+ x)n

+ í/em_c.x(2X+1)""c¡ + • • ■ + db0x(2X+x)n~m is part of the product h¡g¡. Since S

is a strict semiring, none of the terms in any of these products can vanish.

Consequently the right side of (1) contains a term of degree (2À + l)n — c¡. A

term of this degree is guaranteed because g, must contain at least two nonzero

terms. Since (2A + \)p > c > c¡, it follows that

(2a + l)/i > (2A + 1)« - c, > (2a + 1)« - c > (2A + 1)« - (2A + \)p
(2)

= (2\+L)(«-iO.

The second highest term on the left side of (1) is (2X + \)(n - p). Hence a

term of degree (2 À + 1)« — c, cannot appear on the left side of (1) because of

(2), a contradiction.

4.3. Corollary. Let S be a strict semiring. If F is a monic free k-ideal in S[x],

then every basis for F is infinite.

The above results make it possible to prove the following structure theorem

for monic free ^-ideals in S[x], where S is a strict semiring.

4.4. Theorem. Let S be a strict semiring. If F is a monic free k-ideal in S[x],

then F =  U Fa where {Fa} is a proper ascending chain of ideals.

Proof. Corollary 4.3 assures that F has an infinite basis, say, B = (ga) for

a G A. Well order the elements of B and let F0 = (g0) and Fa = 27<a ^V

+ (ga). It is easy to see that {Fa} is a proper ascending chain of ideals and

F= UFa.
4.5. Example. Consider the integers Z and the nonnegative integers Z+.

Clearly Z is a semiring and Z+ is a strict semiring. Define a mapping

tj: Z + [x] -> Z[i], i = V13!, by tj(/(x)) = /(/')• Itis clear tnat t/ is a semiring

homomorphism and that F = ker tj is a A>ideal in Z+. Let M be a monic ideal

such that M c F. If ax' G M, then ax' G F and Tj(ax') = ai' = 0. Hence

a = 0 and it follows that ax' = 0. Consequently M = 0 and F is monic free.
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Now let A0 = (x2 + 1), Ax = (x6 + 1) + A0, ..., An = (x4n+2 + 1) + An_x,

..., and let A = L)A¡. Clearly {^4,} is a proper ascending chain of ideals in

Z + [x]. lif(x) E A, then there existsp such that/(x) G Ap and it follows that

f(x) = (x2 + l)/0(x) + • • • + (x4p+2 + \)fp(x). Further,   '

r/(/w) = /(/) - a2 + o/o(o + • • • + a4p+2 + »¿to

= 0-/0(/) + --- + 0-^(/) = 0,

and it follows that f(x) G F. Consequently, A E F. Now suppose f(x)

= anxn + ■ ■ ■ + a0 E F. Then tj(/(») = /(/) = 0. Write f(x) = /,(x)

+ f2(x), where fx(x) has only odd degree terms and/2(x) has only even degree

terms. It follows from/(/) = 0 that/i(z) = 0 and/2(<) = 0. Using this and

the fact that the coefficients of j\x) are nonnegative integers, it is straightfor-

ward to show, by rearranging terms and factoring, that/(x) = (x + l)go(x)

+ • ■ • + (x4'+x + l)gt(x), where g,(x) G Z + [x]. Hence/(x) G A and F C A.

Consequently A = F. Thus F is a monic free /c-ideal with an infinite basis.

Next, let N = (x + 1) be the ideal in Z + [x] generated by x + 1. It follows

from Example 2.7 that vV is monic free in Z + [jc]. Thus TV is a monic free ideal

with a finite basis. Now assume that N is a fc-ideal. It is clear that

(x + \)2(x + 1) = (x + l)3 G N   and   3x(x + 1) G N.   Consequently,

(x + 1)3= x3 + 3x2 + 3x + 1 = x3 + 1 + 3x(x + 1)

and x3 + 1 G N. But this gives x3 + 1 = g(x)(x + 1), for some g(x) E

Z +[x], which is impossible. Thus N is not a /í:-ideal.

5. Mixed ideals. When E is a mixed ideal in S[x] one can consider the monic

part of E and the monic free part of E. While E may contain many monic

ideals, it also contains a "largest" monic ideal.

5.1. Definition. When E is a mixed ideal in S[x] the set E° ='21{Ma\Ma is

monic and Ma c E) will be called the monic interior of E.

Obviously E° is a monic ideal in S[x] and it follows from the definition of

E° that £'° is the maximal monic ideal contained in E. Also since E is mixed,

E° ¥= E.

5.2. Definition. When E is a mixed ideal in S[x] the set bE = E — E° will

be called the boundary of E.

5.3. Theorem. Let S be a strict semiring. If E is a mixed ideal in S[x] then

E = Ex U E2 where Ex is the maximal monic ideal contained in E and E2 is

monic free.

Proof. Since Ex = E°, it only remains to show that E2 is monic free. Let

E2 = (bE) be the ideal generated by bE. To show that E2 is monic free it is

sufficient to show that the ideal (bE) contains no nonzero elements of the

form ax'. Observe that the boundary bE can contain no term of the form ax'

since (ax1) would be a monic ideal contained in E and ax' E (ax') E E°.

This is impossible since bE D E° = 0. Consequently, the ideal (bE), being in

a polynomial semiring, can contain no term of the form ax' since bE is a basis

for (bE) and S is a strict semiring. Thus E2 is monic free.
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It is noted here that for a mixed ideal in S[x] the ascending chain

E   C E C E is always proper.
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