MONIC AND MONIC FREE IDEALS IN A POLYNOMIAL SEMIRING

LOUIS DALE

Abstract

Two classes of ideals are introduced in a polynomial semiring $S[x]$, where S is a commutative semiring with an identity. A structure theorem is given for each class.

1. Introduction. While much is known about ideals in rings and polynomial rings, little is known about ideals in polynomial semirings. In this paper, two classes of ideals in a polynomial semiring will be explored and a structure theorem for each class will be presented.
2. Fundamentals. There are different definitions of a semiring appearing in the literature. However, the definition used in [1] will be used throughout this paper. This definition is given as follows:
2.1. Definition. A set S together with two binary operations called addition $(+)$ and multiplication (\cdot) will be called a semiring provided $(S,+)$ is an abelian semigroup with a zero, (S, \cdot) is a semigroup, and multiplication distributes over addition from the left and from the right.

A semiring S is said to be commutative if (S, \cdot) is a commutative semigroup. A semiring S is said to have an identity if there exists $1 \in S$ such that $1 \cdot x=x \cdot 1$ for each $x \in S$.
2.2. Definition. A semiring S is said to be a strict semiring if $a \in S, b \in S$ and $a+b=0$ imply $a=b=0$.

The set of nonnegative integers under the usual operations of addition and multiplication is a strict semiring.
2.3. Definition. A subset I of a semiring S will be called an ideal in S if I is an additive subsemigroup of $(S,+), I S \subset I$ and $S I \subset I$.
2.4. Definition. An ideal I in a semiring S will be called a k-ideal if $a \in I, b \in S$ and $a+b \in I$ imply $b \in I$.
2.5. Definition. An ideal M in $S[x]$, where S is a commutative semiring with an identity, will be called monic if $\sum a_{i} x^{i} \in M$ implies $a_{i} x^{i} \in M$ for each $i \in\{0,1,2, \ldots, n\}$.
2.6. Definition. An ideal F in $S[x]$, where S is a commutative semiring with an identity, will be called monic free if M is a monic ideal such that $M \subset F$

[^0]then $M=\{0\}$. Ideals which are neither monic nor monic free will be called mixed.
2.7. Examples. Let Z be the integers and $Z[x]$ the ring of polynomials over Z. Let $a x^{i} \in Z[x]$ where $i>0$ and $a \neq 0$. Then, clearly $\left(a x^{i}\right)$ is a monic ideal in $Z[x]$. Now let $F=(x+1)$ be the ideal in $Z[x]$ generated by $x+1$. Then F is a monic free ideal in $Z[x]$. To see this, let M be a monic ideal such that $M \subset F$. If $M \neq 0$, then M being monic assures the existence of an element $a x^{i} \in M$ such that $a \neq 0$ and $i>0$. Without loss of generality, we may assume that i is even. Thus, $a x^{i} \in F$, whence $a x^{i}=g(x)(x+1)$ for some polynomial $g(x)$ in $Z[x]$. Replacing x by -1 yields $a=0$, a contradiction. Hence $M=0$ and F is monic free.

Throughout this paper, unless otherwise stated, S will be a commutative semiring with an identity and $S[x]$ will be the semiring of polynomials over S in the indeterminate x.
3. Monic ideals. Let $\left\{I_{n}\right\}$ be an ascending chain of ideals in a semiring S and $I^{*}=\left\{\sum a_{i} x^{i} \in S[x] \mid a_{i} \in I_{i}\right\}$.
3.1. Theorem. I^{*} is a monic ideal in $S[x]$.

Proof. Let $f=a_{n} x^{n}+\cdots+a_{0} \in I^{*}, g=b_{m} x^{m}+\cdots+b_{0} \in I^{*}$, and $h=c_{k} x^{k}+\cdots+c_{0} \in S[x]$. It follows from $\left(a_{i}+b_{i}\right) \in I_{i}$ that $f+g \in I^{*}$. Consider the product $h f=\sum p_{t} x^{t}$, where $p_{t}=\sum c_{i} a_{j}$ for $i+j=t$. Clearly $j \leqslant t$ and consequently, $a_{j} \in I_{t}$ since $\left\{I_{n}\right\}$ is an ascending chain. Hence $p_{t}=\sum c_{i} a_{j} \in I_{t}$ and $h f \in I^{*}$. Since $f \in I^{*}$, it follows that $a_{i} \in I_{i}$ and consequently $a_{i} x^{i} \in I^{*}$.

At this point the following question may be asked: Does every monic ideal in $S[x]$ come from an ascending chain of ideals in S ? To answer this question, a method of constructing an ascending chain of ideals in S from a given ideal in $S[x]$ is needed.

Let A be an ideal in $S[x]$ and $A_{i}=\left\{a \in S \mid\right.$ there is an $f \in A$ such that $a x^{i}$ is a term of f \}.
3.2. Theorem. If A is an ideal in $S[x]$, then $\left\{A_{n}\right\}$ is an ascending chain of ideals in S.

Proof. For $a \in A_{i}$ and $b \in A_{i}$ there are polynomials $f \in A$ and $g \in A$ such that $a x^{i}$ and $b x^{i}$ are terms of f and g respectively. Consequently, $f+g \in A,(a+b) x^{i}$ is a term of $f+g$ and $a+b \in A_{i}$. If $c \in S$, then $c f \in A$ and it follows that $c a x^{i}$ is a term of $c f$. Consequently $c a \in A_{i}$. Since $x f \in A$, it is clear that $a x^{i+1}$ is a term of $x f$ and $A_{i} \subset A_{i+1}$.

For an ideal A in $S[x]$, the ascending chain of ideals $\left\{A_{n}\right\}$ in S will be called coefficient ideals. Let $A^{*}=\left\{\sum a_{i} x^{i} \in S[x] \mid a_{i} \in A_{i}\right\}$. Then $A \subset A^{*}$ and Theorem 3.1 assures that A^{*} is a monic ideal in $S[x]$.

3.3. Theorem. An ideal A in $S[x]$ is monic if and only if $A=A^{*}$.

Proof. Theorem 3.1 assures that A is monic if $A=A^{*}$. Suppose A is monic and $f=a_{n} x^{n}+\cdots+a_{0} \in A^{*}$. Then $a_{i} \in A_{i}$ and there is a polynomial $g_{i} \in A$ such that $a x^{i}$ is a term of $g_{i} . A$ being monic assures that $a_{i} x^{i} \in A$.

Consequently $f \in A$ and $A^{*} \subset A$. From $A \subset A^{*}$ it follows that $A=A^{*}$.
This theorem assures that all monic ideals in $S[x]$ can be structured from ascending chains of ideals in S. What about monic k-ideals?
3.4. Theorem. A monic ideal M in $S[x]$ is a k-ideal if and only if M_{i} is a k ideal in S for each i.

Proof. Suppose M is a monic k-ideal in $S[x]$. Then $M=M^{*}$. Let $a \in M_{i}, b \in S$ and $a+b \in M_{i}$. Then $a x^{i} \in M,(a+b) x^{i}=a x^{i}+b x^{i}$ $\in M$ and $b x^{i} \in M$ since M is a k-ideal. Consequently $b \in M_{i}$ and M_{i} is a k ideal. Conversely, suppose each M_{i} is a k-ideal, $f=a_{n} x^{n}+\cdots+a_{0} \in M, g$ $=b_{m} x^{m}+\cdots+b_{0} \in S[x]$ and $f+g \in M$. Then $a_{i} \in M_{i}, a_{i}+b_{i} \in M_{i}$ and it follows that $b_{i} \in M_{i}$. Consequently $b_{i} x^{i} \in M$ and $g \in M$. Therefore M is a k-ideal.
3.5. Definition. For an ideal A in $S[x]$, the set $\bar{A}=\cap\{M \mid M$ is monic and $A \subset M\}$ will be called the monic closure of A.
It is evident that for any ideal A in $S[x], \bar{A}$ is a monic ideal and consequently $\bar{A}=A^{*}$. It is easy to show that if $A \subset B$, then $\bar{A} \subset \bar{B}$.
3.6. Theorem. If A and B are ideals in $S[x]$, then $\bar{A} \cap \bar{B}=\overline{A \cap B}$.

Proof. $\bar{A} \cap \bar{B} \subset \overline{A \cap B}$ is clear. Let $f=\sum a_{i} x^{i} \in \overline{A \cap B}$. Since $\overline{A \cap B}$ is monic, $a_{i} x^{i} \in \overline{A \cap B}$. Thus there is a polynomial $g_{i} \in A \cap B$ such that $a_{i} x^{i}$ is a term of g_{i}. Now $g_{i} \in A$ and $g_{i} \in B$. Hence $a_{i} x^{i} \in \bar{A}$ and $a_{i} x^{i} \in \bar{B}$ and it follows that $a_{i} x^{i} \in \bar{A} \cap \bar{B}$. Consequently $f=\sum a_{i} x^{i} \in \bar{A} \cap \bar{B}$ and $\overline{A \cap B} \subset \bar{A} \cap \bar{B}$. Whence $\bar{A} \cap \bar{B}=\overline{A \cap B}$.
4. Monic free ideals. Of the monic free ideals in a polynomial semiring, the monic free k-ideals are the most interesting. The following lemma is important to the study of monic free k-ideals.
4.1. Lemma. If A is a k-ideal in $S[x], f=a_{n} x^{n}+\cdots+a_{0} \in A$, and τ is a nonnegative integer, then

$$
\left(a_{n} x^{n}+\cdots+a_{i+1} x^{i+1}+a_{i-1} x^{i-1}+\cdots+a_{0}\right)^{2 \tau+1}+\left(a_{i} x^{i}\right)^{2 \tau+1} \in A .
$$

Proof. By induction on τ. Let $f=h+g$ where $h=a_{n} x^{n}+\cdots+a_{i+1} x^{i+1}$ $+a_{i-1} x^{i-1}+\cdots+a_{0}$ and $g=a_{i} x^{i}$. Assume that $h^{2 \tau+1}+g^{2 \tau+1} \in A$. Since A is an ideal it is clear that $\left[h^{2 \tau+2}+g^{2 \tau+2}\right] f \in A$ and $\left[h^{2 \tau+1}+g^{2 \tau+1}\right] h g \in A$. Then

$$
\begin{aligned}
{\left[h^{2 \tau+2}+g^{2 \tau+2}\right] f } & =\left[h^{2 \tau+2}+g^{2 \tau+2}\right](g+h) \\
& =h^{2 \tau+3}+g^{2 \tau+3}+\left[h^{2 \tau+1}+g^{2 \tau+1}\right] h g .
\end{aligned}
$$

Consequently $h^{2 \tau+3}+g^{2 \tau+3} \in A$, since A is a k-ideal, and $h^{2 \tau+1}+g^{2 \tau+1} \in A$ for all nonnegative integers τ.
4.2. Theorem. Let S be a strict semiring. A monic free ideal F in $S[x]$ with a finite basis is not a k-ideal.

Proof. Suppose that the theorem is false and F is a monic free k-ideal with
a finite basis $B=\left\{g_{1}, g_{2}, \ldots, g_{n}\right\}$. Let $\Delta: S[x] \rightarrow Z^{+}$be a function defined as follows: (1) if $h=b_{n} x^{n}+b_{n-p} x^{n-p}+\cdots+b_{0}$ has degree n and $b_{n-p} \neq 0$, then $\Delta(h)=p$, (2) if $h=a x^{n}, a \neq 0$, then $\Delta(h)=n$ and (3) if $h=0$, then $\Delta(h)=0$. Now let $\Delta\left(g_{i}\right)=c_{i}$. Since F is monic free, g_{i} contains at least two nonzero terms and consequently $c_{i} \geqslant 1$. Suppose $c=\max \left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$ and consider $f=a_{n} x^{n}+a_{n-p} x^{n-p}+\cdots+a_{0} \in F$. Clearly $\Delta(f)=p$ and it follows from Lemma 4.1 that $f_{\tau}=\left(a_{n} x^{n}\right)^{2 \tau+1}+\left(a_{n-p} x^{n-p}+\cdots+a_{0}\right)^{2 \tau+1} \in F$ for each nonnegative integer τ. Since p is fixed and $\Delta\left(f_{\tau}\right)=(2 \tau+1) p$, the sequence $\{(2 \tau+1) p\}$ is an increasing sequence of integers. Consequently, there is a λ such that $\Delta\left(f_{\lambda}\right)=(2 \lambda+1) p>c$. Also $f_{\lambda} \in F$ and B a basis for F assures that

$$
\begin{equation*}
f_{\lambda}=\left(a_{n} x^{n}\right)^{2 \lambda+1}+\left(a_{n-p} x^{n-p}+\cdots+a_{0}\right)^{2 \lambda+1}=h_{1} g_{1}+\cdots+h_{n} g_{n} \tag{1}
\end{equation*}
$$

for $h_{i} \in S[x]$. At least one of the products, say $h_{i} g_{i}$ must produce a term of degree $(2 \lambda+1) n$, since $\left(a_{n} x^{n}\right)^{2 \lambda+1}$ appears on the left side of (1). From $\Delta\left(g_{i}\right)=c_{i}$ it follows that $g_{i}=b_{m} x^{m}+b_{m-c_{i}} x^{m-c_{i}}+\cdots+b_{0}$. Moreover, h_{i} must have a term of the form $d x^{(2 \lambda+1) n-m}$ and $d x^{(2 \lambda+1) n-m} g_{i}=d b_{m} x^{(2 \lambda+1) n}$ $+d b_{m-c_{i}} x^{(2 \lambda+1) n-c_{i}}+\cdots+d b_{0} x^{(2 \lambda+1) n-m}$ is part of the product $h_{i} g_{i}$. Since S is a strict semiring, none of the terms in any of these products can vanish. Consequently the right side of (1) contains a term of degree $(2 \lambda+1) n-c_{i}$. A term of this degree is guaranteed because g_{i} must contain at least two nonzero terms. Since $(2 \lambda+1) p>c \geqslant c_{i}$, it follows that

$$
\begin{align*}
(2 \lambda+1) n & >(2 \lambda+1) n-c_{i} \geqslant(2 \lambda+1) n-c>(2 \lambda+1) n-(2 \lambda+1) p \\
& =(2 \lambda+1)(n-p) \tag{2}
\end{align*}
$$

The second highest term on the left side of (1) is $(2 \lambda+1)(n-p)$. Hence a term of degree $(2 \lambda+1) n-c_{i}$ cannot appear on the left side of (1) because of (2), a contradiction.
4.3. Corollary. Let S be a strict semiring. If F is a monic free k-ideal in $S[x]$, then every basis for F is infinite.

The above results make it possible to prove the following structure theorem for monic free k-ideals in $S[x]$, where S is a strict semiring.
4.4. Theorem. Let S be a strict semiring. If F is a monic free k-ideal in $S[x]$, then $F=\cup F_{\alpha}$ where $\left\{F_{\alpha}\right\}$ is a proper ascending chain of ideals.

Proof. Corollary 4.3 assures that F has an infinite basis, say, $B=\left\{g_{\alpha}\right\}$ for $\alpha \in A$. Well order the elements of B and let $F_{0}=\left(g_{0}\right)$ and $F_{\alpha}=\sum_{\gamma<\alpha} F_{\gamma}$ $+\left(g_{\alpha}\right)$. It is easy to see that $\left\{F_{\alpha}\right\}$ is a proper ascending chain of ideals and $F=\cup F_{\alpha}$.
4.5. Example. Consider the integers Z and the nonnegative integers Z^{+}. Clearly Z is a semiring and Z^{+}is a strict semiring. Define a mapping $\eta: Z^{+}[x] \rightarrow Z[i], i=\sqrt{-1}$, by $\eta(f(x))=f(i)$. It is clear that η is a semiring homomorphism and that $F=\operatorname{ker} \eta$ is a k-ideal in Z^{+}. Let M be a monic ideal such that $M \subset F$. If $a x^{t} \in M$, then $a x^{t} \in F$ and $\eta\left(a x^{t}\right)=a i^{t}=0$. Hence $a=0$ and it follows that $a x^{t}=0$. Consequently $M=0$ and F is monic free.

Now let $A_{0}=\left(x^{2}+1\right), A_{1}=\left(x^{6}+1\right)+A_{0}, \ldots, A_{n}=\left(x^{4 n+2}+1\right)+A_{n-1}$, \ldots, and let $A=\cup A_{i}$. Clearly $\left\{A_{i}\right\}$ is a proper ascending chain of ideals in $Z^{+}[x]$. If $f(x) \in A$, then there exists p such that $f(x) \in A_{p}$ and it follows that $f(x)=\left(x^{2}+1\right) f_{0}(x)+\cdots+\left(x^{4 p+2}+1\right) f_{p}(x)$. Further,

$$
\begin{aligned}
\eta(f(x)) & =f(i)=\left(i^{2}+1\right) f_{0}(i)+\cdots+\left(i^{4 p+2}+1\right) f_{p}(i) \\
& =0 \cdot f_{0}(i)+\cdots+0 \cdot f_{p}(i)=0
\end{aligned}
$$

and it follows that $f(x) \in F$. Consequently, $A \subset F$. Now suppose $f(x)$ $=a_{n} x^{n}+\cdots+a_{0} \in F$. Then $\eta(f(x))=f(i)=0$. Write $f(x)=f_{1}(x)$ $+f_{2}(x)$, where $f_{1}(x)$ has only odd degree terms and $f_{2}(x)$ has only even degree terms. It follows from $f(i)=0$ that $f_{1}(i)=0$ and $f_{2}(i)=0$. Using this and the fact that the coefficients of $f(x)$ are nonnegative integers, it is straightforward to show, by rearranging terms and factoring, that $f(x)=\left(x^{2}+1\right) g_{0}(x)$ $+\cdots+\left(x^{4 t+1}+1\right) g_{t}(x)$, where $g_{i}(x) \in Z^{+}[x]$. Hence $f(x) \in A$ and $F \subset A$. Consequently $A=F$. Thus F is a monic free k-ideal with an infinite basis.
Next, let $N=(x+1)$ be the ideal in $Z^{+}[x]$ generated by $x+1$. It follows from Example 2.7 that N is monic free in $Z^{+}[x]$. Thus N is a monic free ideal with a finite basis. Now assume that N is a k-ideal. It is clear that $(x+1)^{2}(x+1)=(x+1)^{3} \in N$ and $3 x(x+1) \in N$. Consequently,

$$
(x+1)^{3}=x^{3}+3 x^{2}+3 x+1=x^{3}+1+3 x(x+1)
$$

and $x^{3}+1 \in N$. But this gives $x^{3}+1=g(x)(x+1)$, for some $g(x) \in$ $Z^{+}[x]$, which is impossible. Thus N is not a k-ideal.
5. Mixed ideals. When E is a mixed ideal in $S[x]$ one can consider the monic part of E and the monic free part of E. While E may contain many monic ideals, it also contains a "largest" monic ideal.
5.1. Definition. When E is a mixed ideal in $S[x]$ the set $E^{0}=\Sigma\left\{M_{\alpha} \mid M_{\alpha}\right.$ is monic and $\left.M_{\alpha} \subset E\right\}$ will be called the monic interior of E.

Obviously E^{0} is a monic ideal in $S[x]$ and it follows from the definition of E^{0} that E^{0} is the maximal monic ideal contained in E. Also since E is mixed, $E^{0} \neq E$.
5.2. Definition. When E is a mixed ideal in $S[x]$ the set $b E=E-E^{0}$ will be called the boundary of E.
5.3. Theorem. Let S be a strict semiring. If E is a mixed ideal in $S[x]$ then $E=E_{1} \cup E_{2}$ where E_{1} is the maximal monic ideal contained in E and E_{2} is monic free.

Proof. Since $E_{1}=E^{0}$, it only remains to show that E_{2} is monic free. Let $E_{2}=(b E)$ be the ideal generated by $b E$. To show that E_{2} is monic free it is sufficient to show that the ideal ($b E$) contains no nonzero elements of the form $a x^{i}$. Observe that the boundary $b E$ can contain no term of the form $a x^{i}$ since ($a x^{i}$) would be a monic ideal contained in E and $a x^{i} \in\left(a x^{i}\right) \subset E^{0}$. This is impossible since $b E \cap E^{0}=\varnothing$. Consequently, the ideal ($b E$), being in a polynomial semiring, can contain no term of the form $a x^{i}$ since $b E$ is a basis for $(b E)$ and S is a strict semiring. Thus E_{2} is monic free.

It is noted here that for a mixed ideal in $S[x]$ the ascending chain $E^{0} \subset E \subset \bar{E}$ is always proper.

Reference

1. P. J. Allen, A fundamental theorem of homomorphisms for semirings, Proc. Amer. Math. Soc. 21 (1969), 412-416. MR 38 \# 5856.

Department of Mathematics, University of Alabama in Birmingham, Birmingham, Alabama 35233

[^0]: Presented to the Society, March 20, 1975 under the title Monic free ideals in a polynomial semiring; received by the editors September 23, 1974 and, in revised form, January 7, 1975.

 AMS (MOS) subject classifications (1970). Primary16-02, 16A66; Secondary 16A78.
 Key words and phrases. Strict semiring, monic ideals, monic free ideals, k-ideals, coefficient ideals, monic closure, mixed ideals.

