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K¡ OF UPPER TRIANGULAR MATRIX RINGS

R. KEITH DENNIS1 AND SUSAN C. GELLER

Abstract.    Standard techniques are used to compute K¡(i = 0,1,2) of

generalized triangular matrix rings.

For R an associative ring with unit, let T denote the ring of upper triangular

2 by 2 matrices over R. Quillen2 has announced that K¡(T) « K¡(R) © K¡(R)

for all (' > 0. The purpose of this note is to give a proof of a generalization of

this theorem for i = 0, 1, 2 using standard techniques. This generalization is

probably true for the higher A"s.

For R and S rings with unit and M an Ä-5-bimodule, let T denote the ring

of all upper triangular matrices of the form

(r    m\
I J ,        r G R, s G S, m G M,

with addition and multiplication defined in the obvious way. We will prove the

following:

Theorem 1. For i = 0, 1, 2 the canonical map K¡(T) -» K¡(R) © K¡(S) is an

isomorphism.

An induction argument yields

Corollary 2. Let Tn be the ring of upper triangular n by n matrices over the

ring R. Then for i = 0, 1, 2, K¡(T„) « K¡(R)n.

1. The cases / = 0, 1. Let J denote the ideal of T which consists of those

matrices whose only nonzero entries lie in M. As J2 = 0, J is contained in the

Jacobson radical of T. Thus T is /-adically complete and the map K0(T)

—> K0(T/J) is an isomorphism [B, Proposition 1.3, p. 449]. This yields the

result in case ; = 0.

Since the map T —» T/J splits and T/J ?» R © S, the exact sequence for an

ideal yields

(1) 1 -+ K¡(T,J) -* K,(T) -> K,(R) © Ki(S) -* 1.

According  to  Swan  [Sw,  Theorem 2.1]  KX(T,J) « I + J/W(T,J)  where

W(T,J) is the subgroup of T* (the group of units of T) generated by all
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elements of the form (1 + jt)(\ + tj)~ , t E T,j E J. But an arbitrary ele-

ment of 1+7, (¿f). bes in W(T,J) as is seen by taking / = (q°x) and

J = (o o)- Hence KX(T,J) is trivial and the result follows from exact sequence

(1).
It should be noted that Swan's theorem is not really necessary. Upon

observing that the diagonal elements of a matrix congruent to 1 modulo J are

units, the usual process of row and column reduction together with the

equation

diag(l +/1) = EX2(j)E2X(t)EX2(-j)E2x(-t)

yields the result.

2. The case i = 2. Throughout this section unexplained notation will be that

of [D-Sl]. Let a, b E R be such that 1 + ab E R*. Note that 1 + ba E R*.
For each pair of indices a = ij, let -a denote the reversed pair,/', and define

Ha(a,b) - x_a(-b(\ + ab)-X)xa(a)x-a(b)xa(-a(\ + ba)~X).

Denote by H(n,R) the subgroup of St(n,R) generated by all elements Ha(a, b).

Note that y(Ha(a,b)) = diag(w1;... ,un), where

u,■ = 1 + ab,        Uj = (1 + ba)~\

and uk = 1 for k # i,j. According to [D-Sl, 8(a), p. 248] it follows that, for

H E H(n,R),n > 3,<p(H) = diag (t>,,...,t^

(2) »xkl(r) = xkl(vkrvrX).

In particular, it follows that K2(n,R) n H(n,R) is central in St(n,R) for all

n > 3.

Let J be any ideal contained in the Jacobson radical of the ring R and define

H(n,J) to be the subgroup of H(n,R) generated by all elements Ha(a,b)

where at least one of a, b lies in J. We define K2(n,J) to be the kernel of the

map K2(n,R) -> K2(n,R/J). The techniques of [St] and [S-D] applied to the

case of an arbitrary ring R immediately yield the first part of the following

theorem.

Theorem 3. Let J be an ideal contained in the Jacobson radical of the ring R.

Then K2(n,J) E H(n,J) for all n > 3. Consequently the maps K2(n,J)

—» K2(n + \,J) -» K2(J) are surjective for all n > 2.

The proof of surjectivity and the proof of Theorem 1 depend on certain

identities in H(n,R) listed below. Throughout this section we write a = ij, ß

= jk, and y = ki for distinct integers /, / k.

Lemma 4. The following identities are valid in St(n,R):

(i) If H E H(n,R) is such that <p(H ) = diag(yj,..., vn), then for n > 3,

HHa(a,b) = H^av-Kvjbvjr1).

(ii) // n > 2, then
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1
Ha(a,b) = H_a(-b,-a

(Hi) If n > 3, then

and

Ha(ax + a2,b) = Ha(a2,b(l + o, é)~' )#>„ ¿0

Ha(a,bx + b2) = Ha(a,bx)Ha(a(^ + b{a)~X,b2).

(iv) If n > 3, then

Ha(a,bc)~ Hß(b,ca)    Hy(c,ab)~~   = 1.

(v) // n > 3, iÄe«

//>,è) = //_>,-a(l+M_l)

/7a(a,¿>) = Ha(a(\ + ba)~X ,-b)~X.

Identity (i) is immediate from equation (2). The proofs of (ii)-(iv) involve

writing certain expressions in the unique LHU form of Stein as in [St, Lemma

2.7] or [S-D, Proposition 1.1], This is accomplished with the aid of the formula

xMx_a(b) = jr_a(6(l + ab)-X)Ha(a,b)xa(-aba(\ + ba)~X)

when 1 + ab G R*.■
To prove (ii) put the left and right sides of

x"^x_a(b) = x_a(b)(XÁ~bK(-a))~lxa(-a)

in the LHU form. The first part of (iii) is obtained similarly by considering

*.(fli+flí)jC_a(¿) = x«Mx°Mx_a(b).

Note that we must assume that n > 3 in order to apply (2) to put the right-

hand side in the LHU form. The second part of (iii) is obtained from the first

part by applying (ii), taking inverses and renaming.

Part (iv) is obtained by using the Philip Hall identity

y[x,[y-x,z]] z[y,[z-x,x]] x[z,[x~x,y]]= 1

with x = xa(a), y = Xß(b), and z = xy(c). The expression is then simplified

using the Steinberg relations and (2) with the final step an application of (ii).

For an outline of the computation see [D-S2, Proposition 1.1] (cf. [Sw, Lemma

7.7]).
To prove the first part of (v), note that, if n > 3, then

H^a'b)x_Jb(\ + ab)) = x_a(b(^ + ab)~l),
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and hence

Ha(a,b) = x_a(b(l + abYX)Ha(a,b)x_a(-b(\ + ab))

= H_a(b,-a(i +ba)~X).

The last equality follows from the definition of Ha after one simplifies the

preceding expression. The second part of (v) follows from the first by an

application of (ii).

Lemma 5. Let J be an ideal contained in the Jacobson radical of the ring R.

Then for all n ^ 2

(a) the map K2(n,R) n H(n,R) -» K2(n + l,R) Pi H(n + \,R) is surjec-

tive and

(b) the map K2(n,J) n H(n,J) -* K2(n + 1,7) n H(n + \,J) is surjective.

By taking c = 1 and k = I in (iv) and applying (i) we obtain

Hy(a,b) = HJX(b,a)-XHXi(\,ab)-X - HXj(-a,-b)HXi(\,abyX.

Thus elements of the form Hy(a,b) generate H(n + l,R). By applying (i) we

see that any z E H(n + 1,R) can be written as 2 = z2 ■ ■ • zn+x where Zj is a

product of elements of the form HxÂa,b)± . Thus if z E K2(n + \,R)

n H(n + \,R), we have <p(z) = 1. Hence tp{zj) = diag(wi,... ,u„+x) where

ut• = 1 for 2 < / < n + 1. If/ > 2, then Zjw2j(\) = w2j(\) by equation (2)

and hence z- = W2^x'zj. Now by [Mi, Corollary 9.4] it follows that z¡, and

hence z, is a product of elements of the form ¿^(ûjé) . These elements

clearly lie in the image of K2(2,R) Pi H(2,R), proving the first assertion. The

proof of the second is analogous. This also yields the second part of Theorem

3.
We now proceed to the proof of Theorem 1 in the case /' = 2. For all

n > 3, K2(n, ) preserves finite products, and thus there is a short exact

sequence as in (1). We thus need only show that K2(n,J) is trivial for all

n > 3. For the rest of this section, let n > 3. By Theorem 3 we may assume

that the elements of K2(n,J) are products of elements of the form Hx2(a,b)±X

and H2x(a,b)~ where one of a, b is in J. Note that by the second equation of

(v) we may assume that the exponent is +1, and by the first equation of (v) we

may assume that only the Hx2(a,b) occur. Let ex and e2 denote the images in

T of the identity elements of R and S, respectively. Then any element of T

may be written uniquely as rex + se2 +j,rER,sES,jE J. First note that

if/7" E J, then an application of (iv) using a = j', b = ex, c = / yields

(3) Ha(j',j) = 1    for any a.

Now by applying (iii) twice and (3) once we obtain

(4) Ha(rex + se2 +j'J) = Ha(rexJ)Ha(se2,j)    for any a.

A similar equation is valid in case the variables are switched.

By applying (iv) with a = rex, b = j, c = e2, we obtain
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Ha(rex,j) = Hy(e2,rj)~x

and with a = ex, b = rj, c = e2, we obtain

(5) Ha(ex,rj) = Hy(e2,rj)-X.

These two equations yield

(6) Ha(rex,j) = Ha(ex,rj)

and similarly one obtains

(7) Ha(se2,j) - Ha(e2,js).

We can thus rewrite equation (4) as

(8 ) Ha (rex + se2 + j'J ) = Ha (ex, rj ) Ha (e2 ,js).

As before, a similar result holds when the variables are switched. Also by

applying the second part of (iii) we obtain

(9) Ha(e,,j +/) = Ha(e,,j)Ha(e,,j').

Applying (i), (iii) and (3) shows that

(10) [Ha(ex,j),Ha(e2,j')]=\.

Taking r = 1 in (5) and applying (6) and (ii) yields

Ha (ex ,j ) = Hy (e2 ,j)~x = Hy(-e2,-jyx = H_y (j, e2 ).

Next, (2) shows that "-^^(l) = wß(\) and thus using [Mi, Corollary 9.4],

B-rU.1) = w^]H.y(j,e2) = Ha(j,e2)

which yields

(11) Ha(ex,j) = Ha(j,e2).

Similarly one obtains

(12) Ha(e2,j) = Haij,ex).

To complete the proof that K2(n,J) is trivial, observe that by (8) we may

assume that any element of K2(n,J) is a product of elements of the form

HX2(ex,j), Hx2(e2,j), HX2(j,ex), and Hx2(j,e2). By (11) and (12) we may omit

the last two of these. By (10) we can collect the elements of the two types, and

by (9) we can combine them. Hence we may assume that any element of

K2(n,J) is of the form Hx2(ex,jx)HX2(e2,j2). Upon applying <p we must obtain

1 and thus jx = j2 = 0. Hence K2(n,J) is trivial, completing the proof of

Theorem 1.
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