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Abstract. Let S be a semigroup. Then by a theorem of Tully [7]: S is a

commutative semigroup iff aft = b"am for all a, b e S (m,n > 1, fixed). We

prove the following: S is a commutative semigroup iff ab = ¿,',(a•*)a'^<0'f,) for

all a, b e S, where one of the exponents n(a, b) and m(a, b) is constant and

the other is independent of a or b.

Tamura formulated in [6] the following question: Let S be a semigroup and

f(x,y) a fixed word in x, y G S; when does ab = f(a, b) for all a, b G S imply

the commutativity of S? He proved the following result:

Let f(a,b) be a word involving both a and b, and let the length of f(a,b) be

greater than 2. ab = f(a, b) implies ab = ba in semigroups iff

(i) f(a, b) starts in b and ends in a, and

(ii) ab = f(a, b) implies ab = ba in groups.

Thus he obtained in particular:  ab = b"am for all a, b G S and  fixed

m, n G N (N denotes the set of all natural numbers) implies the commutativ-

ity of S (Tully [7]).
Putcha and Weissglass [5] generalized Tamura's problem, supposing that

f(x,y) is not necessarily a fixed word but can vary with x and.y. We prove the

following

Theorem. Let S be a semigroup. Then the following conditions are equivalent:

(i) 5 is commutative.

(ii) ab = b"am(a) \

(iii) ab = b"am^

(iv) ab = b<a)am

(v) ab = bn{-b)am

for all a, b G S and exponents in N (m, n are fixed and the other exponents

depend only on the indicated variable).

Remark. Note that conditions (iii) and (iv) and also (ii) and (v) are "dual":

Assume for instance that condition (iii) holds in 5. Then defining in S the dual

operation " ° " (see e.g. Ljapin [2, p. 21]): a ° b = ba, (iii) turns to b ° a

= amW o b", thus (iv) holds in (S, °). Therefore we need only prove that (ii)

resp. (iii) implies (i)-the other cases are trivial.

First we show the proposition (ii) resp. (iii) ==> (i) for the special case of

groups, which generalizes Satz 2 of Lausch, Nöbauer and Schweiger [3]:
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Lemma. Let G be a group. Then the conditions (i)-(v) of the Theorem are

equivalent.

Proof. (ii)=> (i). Fixing a = 1 we obtain b = b", fixing b = 1 we get

a = am("\ together ab = ba.

(iii)=* (i). Setting a = 1 in (iii) we get b = b", thus

(1) ab = bam{b),   hence b~xab = am^   for all a, b E G.

Now let Í/ be an arbitrary subgroup of G; then (1) implies b~x UB

= U for all b E G. This means that every subgroup U of G is normal in G.

Suppose now that G is not abelian; then G is hamiltonian and contains the

quaternion group Q as subgroup (see e.g. Hall [1, Chapter 12.5]). Evidently Q

satisfies condition (iii), since G does. Q is a nonabelian group of order 8

defined by g4 — 1, g2 = h2, h~xgh = g~x -hence the order of the center of

Q is 2. By assumption g~xxg = xm^8' for all x E Q. Taking x = g we get

g = gm^\ thus m(g) = 1 (mod 4 (= o(g) = exp Q)). Therefore g~lxg

= x for all x E Q, which means g E Z(Q), which is a contradiction to

o(Z(Q)) = 2. Thus G is abelian.

Proof of the Theorem. To show (ii) resp. (iii)=> (i) we can assume n = 1

in both cases, since otherwise we apply the theorem of Putcha and Weissglass

[5] (see also the remark on p. 67) and obtain that 5 is an inflation of a

semilattice of periodic groups G, (for the definitions see, e.g., Petrich [4]). Since

G, E S and the conditions (ii) and (iii) are hereditary to subsemigroups, we

get by the Lemma that G, is abelian for every i. Now an inflation of a

semilattice of abelian groups is abelian again (see also Tamura [6]).

(ii)=> (i). Let 5 satisfy ab = bam(a) for all a, b E S. We state for arbitrary k

(2) akb = bakm(a)   for all a, b E S.

The case k = 1 is verified by condition (ii), and now proceeding by induction

we obtain

ak + xb = a(bakm^a)) = (ab)akm{fl) = bam(a)akm(a) = ba(k+x)m(a).

Now take an element c with n(c) > 1 and d arbitrary in S. Putting first

d = a, c = b and then c = a, dmX-d> = b in condition (ii) we get

dc = cdm^ = dm^cm^.

Applying (2) with d = a, m(d) = k, cm^ = b we obtain finally

dc = dm^cm^ = c^)d(m{d))\

On the other hand, we get by condition (ii), taking first c = a, d

= b and then d = a, cm^ = b

cd = dcm(c) = cm(c)dm(d).

To conclude the proof we have only to show that dm^ = &**■*>/ for all

d E S. Now fixing a = b = d in condition (ii) we obtain d2 = dm^+x ;
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if m(d) = 2 it follows d2 = d3 m dA = • • ■ = dm(d) = ■■■ = ¿M¿))2'. Now

let m(d) > 2, then d2 = dm{d)+x implies

¿m(rf) = d2dm(d)-2 = dm{d)+\ dm(d)-2 = ¿2m(rf)-l

and also that ¿/2, ..., dm^ form a group with the unity dm^d'x, as is well

known. Therefore we obtain

dm(d) _ ¿2m(d)-l  = í/2m(í/)-l(í/m(rf)-l)¿     for arb¡trary fc

Taking fc = m(d) - 1 we get the desired result: dm{d) = d{m{d))\ Thus 5 is

commutative.

(iii) => (i). Let 5" satisfy ab = 6am(6) for all a, b G S. We define

I = {b G S,m(b) > 1 with ab = èam(è), for all a G S).

We show that / is a subsemigroup of S (it is easy to verify that / is even a

prime ideal of S). Let s, t G I arbitrary, then

(3) as = sam{s)   and    at = tam{,)

for all a G S. We first state for arbitrary k and a G S

(4) (as)k = skal   with / = mk(s) + mk~x(s) + • • • + m(s).

This is proved by induction on k; the case k = 1 is verified by (3). Now

(as)k+X - (skal)(as) = sk(a,+ xs) Ö sV(/+1)m(i)) = ^ + 1«'

with 1 = (I + l)m(s) = mk+x(s) + mk(s) + • ■ • + w(i) concludes the proof of

(4).
Applying equations (3) and (4) we get, therefore,

(5) (as)t = t(as)m{l) = tsm^am^

with certain m(s, i) > 1. Now putting a = s in the second equation of (3) we

obtain st = tsm^ ; together with (5) follows ast = stam^ with m(s, t)

> 1 for all a G S, hence / is a subsemigroup of S. By definition of /,

therefore, ab = bam{^b) with m(b) > 1 specially for a, b G I. Now we can

apply the above mentioned theorem of Putcha and Weissglass [5] and obtain

again that / is commutative. If we take finally an element c G S — I, then c

is in the center of S evidently; thus again S is commutative.

Remark . The Theorem cannot be sharpened in the following sense: 5 is a

commutative semigroup iff ab = b"^ a"1^ for all a, b G S with one

exponent (even) constant and the other dependent on a and b. A counterex-

ample is given by the quaternion group Q: since all subgroups of Q are

normal, we get g~xag = amX-a'g^ for all cyclic subgroups <a> specially. Conse-

quently ag = gam{-a'Z> is satisfied for all a, g G Q, but Q is not abelian.
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