WEAK CONVERGENCE OF SEMIGROUPS IMPLIES STRONG CONVERGENCE OF WEIGHTED AVERAGES

HUMPHREY FONG

ABSTRACT. For a fixed p, $1 \le p < \infty$, let $\{T_t : t > 0\}$ be a strongly continuous semigroup of positive contractions on L_p of a σ -finite measure space. We show that weak convergence of $\{T_t : t > 0\}$ in L_p is equivalent with the strong convergence of the weighted averages $\int_0^\infty T_t f \mu_n(dt) \ (n \to \infty)$ for every $f \in L_p$ and every sequence (μ_n) of signed measures on $(0, \infty)$, satisfying $\sup_n \|\mu_n\| < \infty$; $\lim_n \mu_n(0, \infty) = 1$; and for each d > 0, $\lim_n \sup_{p > 0} |\mu_n| (c, c + d) = 0$. The positivity assumption is not needed if p = 1 or 2. We show that such a result can be deduced—not only in L_p , but in general Banach spaces—from the corresponding discrete parameter version of the theorem.

In recent years, various authors have studied the relations between weak and strong operator convergence: Blum-Hanson [4], Hanson-Pledger [7], Lin [9], Akcoglu-Sucheston [1], Jones-Kuftinec [8], Fong-Sucheston [6], and very recently Akcoglu-Sucheston [2], [3], who proved the theorem for positive L_p -contractions, 1 . This theorem [1], [6], [3] states that if <math>T is a positive contraction on L_p of a σ -finite measure space (X, \mathcal{C}, m) , where p is fixed and $1 \le p < \infty$, then weak- $\lim_{n\to\infty} T^n f(\text{w-}\lim_n T^n f)$ exists for each $f \in L_p$ if, and only if, $\lim_{n\to\infty} \sum_{m=1}^{\infty} a_{nm} T^m f$ exists for every $f \in L_p$ and every matrix (a_{nm}) with real entries satisfying

(1.1)
$$\sup_{n} \sum_{m} |a_{nm}| < \infty; \lim_{n} \sum_{m} a_{nm} = 1; \lim_{n} \max_{m} |a_{nm}| = 0.$$

It has also been shown that the positivity assumption is not needed if p=1 or 2 [1], [6]. The problem of whether or not positivity is needed for $p \neq 1$ or 2 is still open. Matrices satisfying (1.1) were introduced in ergodic context in [6] and have been called *uniformly regular*; we denote the class of all uniformly regular matrices by \mathfrak{A}_R . Intuitively, a matrix $(a_{nm}) \in \mathfrak{A}_R$ if and only if it is properly averaging, in the sense that the masses a_{nm} spread as $n \to \infty$.

A semigroup $\{T_t: t > 0\}$, $T_tT_s = T_{t+s}$, of linear operators on a Banach space B is called strongly continuous if for each $x \in B$ and each s > 0, $\lim_{t \to s} ||T_tx - T_sx|| = 0$. R. Sato [10] recently obtained the following continuous parameter version of the strong ergodic theorem: For a fixed function f in L_2 and a strongly continuous semigroup $\{T_t: t > 0\}$ of contractions on L_2 , w- $\lim_{t \to \infty} T_t f = f_0$ implies $\lim_{n \to \infty} \int_0^\infty a_n(t) T_t f dt = f_0$ for every sequence (a_n) of nonnegative, Lebesgue integrable functions on $(0, \infty)$ satisfying

Received by the editors January 3, 1975 and, in revised form, April 9, 1975.

AMS (MOS) subject classifications (1970). Primary 47A35; Secondary 28A45.

Key words and phrases. Banach space, L_p -space, semigroup of operators, weak convergence, ergodic theorem.

 $\int_0^\infty a_n(t) = 1$ and $\lim_{n\to\infty} ||a_n||_\infty = 0$. In this note, we show that a stronger result can be deduced-not only in L_2 , but in general Banach spaces-from the corresponding discrete version of the theorem (§2). In §3, we obtain as corollaries the continuous parameter version of the Akcoglu-Sucheston theorem for the Banach spaces $L_p(X, \mathcal{Q}, m)$, $1 \le p < \infty$.

2. A linear operator T on a Banach space B is called *power-bounded* if $\sup_n ||T^n|| < \infty$; a semigroup $\{T_i : t > 0\}$ of linear operators on B is called *uniformly bounded* if $\sup_{t > 0} ||T_t|| < \infty$. The *total variation* of a signed measure μ is denoted by $|\mu|$. We denote by $\mathfrak A$ the family of all sequences (μ_n) of signed measures on the σ -algebra of Lebesgue measurable subsets of $(0, \infty)$ satisfying

(2.1)
$$\sup_{n} \|\mu_{n}\| < \infty; \quad \lim_{n} \mu_{n}(0, \infty) = 1;$$

$$\lim_{n \to \infty} \sup_{c \geqslant 0} |\mu_{n}|(c, c + d] = 0 \quad \text{for each } d > 0.$$

REMARK 1. If (a_n) is a sequence of Lebesgue integrable functions on $(0, \infty)$ satisfying

(2.2)
$$\sup_{n} \int_{0}^{\infty} |a_{n}(t)| dt < \infty; \quad \lim_{n} \int_{0}^{\infty} a_{n}(t) dt = 1;$$
$$\lim_{n \to \infty} \sup_{c \geqslant 0} \int_{c}^{c+d} |a_{n}(t)| dt = 0$$

for each d > 0, and if we set $d\mu_n = a_n dt$, then $(\mu_n) \in \mathfrak{A}$. We note that sequences (a_n) satisfying (2.2) include those considered by Sato in [10].

REMARK 2. Let $\delta(t)$ denote the unit point mass at t. If $t_m > 0$, $t_m \to \infty$, $(a_{nm}) \in \mathfrak{A}_R$, and if we set $\mu_n = \sum_m a_{nm} \delta(t_m)$, then $(\mu_n) \in \mathfrak{A}$.

REMARK 3. If x(t) is a bounded continuous function from $(0, \infty)$ to a Banach and if we set $d\mu_n = a_n dt$, then $(\mu_n) \in \mathfrak{A}$. We note that sequences (a_n) satisfying (2.2) include those considered by Sato in [10].

$$\left\| \int_0^\infty x(t)\mu(dt) \right\| \leq \left(\sup_{t \geq 0} \|x(t)\| \right) \cdot \|\mu\| \quad (\text{cf. [5]}).$$

THEOREM 2.1. Let x be a fixed element in a Banach space B, real or complex. Then (α) implies (β) :

- (a) For every power bounded linear operator T on B, if w- $\lim_{n\to\infty} T^n x = x_0$, then $\lim_{n\to\infty} \sum_{m=1}^{\infty} a_{nm} T^m x = x_0$ for every matrix $(a_{nm}) \in \mathfrak{A}_R$.
- (β) For every uniformly bounded semigroup $\{T_t: t>0\}$ of linear operators on B for which T_tx is continuous on $(0,\infty)$, if w- $\lim_{t\to\infty} T_tx=x_0$, then $\lim_n \int_0^\infty T_t x \mu_n(dt) = x_0$ for every sequence $(\mu_n) \in \mathfrak{A}$.

The conclusion remains valid if "power bounded" and "uniformly bounded" in (α) and (β) are both replaced by "contraction".

PROOF. Let x be a fixed element in B, and assume that (α) holds for x. Let $\{T_i: t > 0\}$ be a semigroup satisfying the hypotheses of (β) and $(\mu_n) \in \mathfrak{A}$. We shall show that $\lim_n \int_0^\infty T_i x \mu_n(dt) = x_0$.

Let $\epsilon > 0$. The continuity of $T_t x$ on [1, 2] implies that $T_t x$ is uniformly continuous on [1, 2]. Thus there is a positive integer k such that if

$$g(t) = \sum_{j=1}^{k} 1_{(1+(j-1)/k,1+j/k)}(t) \cdot T_{1+j/k} x,$$

then $||g(t) - T_t x|| < \varepsilon$ for $t \in (1,2]$. Here 1_A denotes the function that is 1 on A, and 0 elsewhere. Set $M = \sup_{t>0} ||T_t||$, $K = \sup_n ||\mu_n||$, and $I_i = (i, i+1]$. Since $|\mu_n|(I_0) \to 0$ by (2.1), we have

$$\limsup_{n \to \infty} \left\| \int_{0}^{\infty} T_{t} x \mu_{n}(dt) - \sum_{i=0}^{\infty} \int_{I_{i+1}} T_{i} g(t-i) \mu_{n}(dt) \right\|$$

$$= \limsup_{n \to \infty} \left\| \int_{I_{0}} T_{t} x \mu_{n}(dt) + \sum_{i=0}^{\infty} \int_{I_{i+1}} (T_{t} x - T_{i} g(t-i)) \mu_{n}(dt) \right\|$$

$$\leq \limsup_{n \to \infty} \left[M \cdot \|x\| \cdot |\mu_{n}|(I_{0}) + \sum_{i=0}^{\infty} \|T_{i}\| \cdot \sup_{t \in I_{1}} \|T_{t} x - g(t)\| \cdot |\mu_{n}|(I_{i+1}) \right]$$

$$\leq M \cdot K \cdot \varepsilon.$$

For each $i \ge 0$, $1 \le j \le k$, set $I_{i,j} = (i + (j-1)/k, i + j/k]$. It follows from the definition of g(t) that for $n \ge 1$,

(2.4)
$$\sum_{i=0}^{\infty} \int_{I_{i+1}} T_i g(t-i) \mu_n(dt) = \sum_{i=0}^{\infty} \sum_{j=1}^{k} \mu_n(I_{i+1,j}) \cdot T_{i+1+j/k} x$$
$$= \sum_{m=k+1}^{\infty} a_{n,m} T^m x,$$

where $T = T_{1/k}$, and for m = (i+1)k+j, $i \ge 0$, $1 \le j \le k$, $a_{n,m} = \mu_n(I_{i+1,j})$. It is easily checked that $(a_{n,m}) \in \mathfrak{A}_R$ since $(\mu_n) \in \mathfrak{A}$. Moreover, since $\{T_i: t > 0\}$ is uniformly bounded and w- $\lim_{t \to \infty} T_t x = x_0$, we have that T is power bounded and w- $\lim_{m \to \infty} T^m x = x_0$. Thus it follows from (α) that $\lim_{m \to \infty} \sum_{m > k} a_{nm} T^m x = x_0$. Together with (2.3) and (2.4), we obtain that

$$\lim \sup_{n\to\infty} \left\| \int_0^\infty T_t x \mu_n(dt) - x_0 \right\| \leqslant MK\varepsilon.$$

As $\varepsilon > 0$ is arbitrary, (β) holds.

It is clear that the second part of the theorem can be proved in the same way. \square

COROLLARY 2.1. Let B be a Banach space. Then $(\alpha)'$ implies $(\beta)'$:

- (a)' For every power bounded linear operator T on B, if w- $\lim_{n\to\infty} T^n x$ exists for every $x\in B$, then $\lim_{n\to\infty} \sum_{m=1}^\infty a_{n,m} T^m x$ exists and is equal to w- $\lim_{n\to\infty} T^n x$ for every $(a_{n,m})\in \mathfrak{A}_B$.
- (β)' For every strongly continuous, uniformly bounded semigroup $\{T_t: t > 0\}$ of linear operators on B, if w- $\lim_{t\to\infty} T_t x$ exists for every $x \in B$, then $\lim_n \int_0^\infty T_t x \mu_n(dt)$ exists for every sequence $(\mu_n) \in \mathcal{M}$, and is equal to w- $\lim_{t\to\infty} T_t x$.

The conclusion remains valid if "power bounded" and "uniformly bounded" are both replaced by "contraction".

PROOF. Immediate from Theorem 2.1.

We next show that the converse of statement (β) in Theorem 2.1 is valid in general Banach spaces.

PROPOSITION 2.1. Let x be a fixed element in a Banach space B, real or complex. Let $\{T_i: t > 0\}$ be continuous linear operators on B such that the vectorvalued function $T_{t,1}x$ from $(0,\infty)$ to B is continuous and $\sup_{t>0} ||T_tx|| < \infty$. Then (b) implies (a):

(a) w- $\lim_{t\to\infty} T_t x$ exists. (b) $\lim_{n\to\infty} \int_0^\infty T_t x \mu_{n(dt)}$ exists for every sequence $(\mu_n) \in \mathfrak{A}$.

PROOF. We first consider the case where B is a real Banach space. Assume that (b) holds but (a) fails. Then there exists an $x^* \in B^*$ such that h(t) $= \langle T, x, x^* \rangle$ diverges as $t \to \infty$, where B^* is the dual space of B. Since

$$\sup_{t>0} |h(t)| \leqslant \sup_{t>0} ||x^*|| \, ||T_t x|| < \infty,$$

h is bounded on $(0,\infty)$. h(t) is also continuous on $(0,\infty)$ since $T_t x$ is. Thus, h(t)being divergent as $t \to \infty$, there are constants α , β with $\alpha < \beta$, and a sequence (t_i) with $t_i \uparrow \infty$, such that $h(t_i) \geqslant \beta$ if i is odd, and $h(t_i) \leqslant \alpha$ if i is even. Set for $n \ge 1$,

$$\mu_{2n} = \frac{1}{n} \sum_{k=1}^{n} \delta(t_{2k}), \quad \mu_{2n-1} = \frac{1}{n} \sum_{k=1}^{n} \delta(t_{2k-1}),$$

where $\delta(t)$ denotes the unit point mass at t. Then $(\mu_n) \in \mathfrak{A}$, but

$$\lim_{n}\inf\left\langle \int_{0}^{\infty} T_{t}x\mu_{n}(dt), x^{*}\right\rangle = \lim_{n\to\infty}\inf\frac{1}{n}\sum_{k=1}^{n}h(t_{2k})$$

$$\leqslant \alpha < \beta \leqslant \limsup_{n\to\infty}\frac{1}{n}\sum_{k=1}^{n}h(t_{2k-1})$$

$$= \lim_{n\to\infty}\sup\left\langle \int_{0}^{\infty} T_{t}x\mu_{n}(dt), x^{*}\right\rangle.$$

Hence $(\int_0^\infty T_t x \mu_n(dt))_{n=1}^\infty$ does not converge weakly, and a fortiori, strongly. If B is a complex Banach space, then either the real part or the imaginary part of h(t) diverges as $t \to \infty$, and can be used to replace h(t) in the above argument.

REMARK 4. The vector-valued function $T_t x$ in Proposition 3.1 may be replaced by any vector-valued function x(t) from $(0, \infty)$ to B such that x(t) is continuous and bounded on $(0, \infty)$.

3. We now apply the results in §2 to the Banach spaces L_p of a σ -finite measure space (X, \mathcal{C}, m) , $1 \leq p < \infty$. An operator T on L_p is called *positive* if $Tf \ge 0$ whenever $f \ge 0$. Theorem 3.1 below strengthens the result of R. Sato mentioned in §1.

THEOREM 3.1. Let $\{T_i: t > 0\}$ be a contraction semigroup on $L_2(X, \mathcal{C}, m)$, and let f be a fixed function in L_2 such that T_i is continuous on $(0, \infty)$. Then conditions (a) and (b) are equivalent:

- (a) w- $\lim_{t\to\infty} T_t f = f_0$. (b) $\lim_n \int_0^\infty T_t f \mu_n(dt) = f_0$ for every $(\mu_n) \in \mathfrak{A}$.

PROOF. This follows from Theorem 1.1 in [6], Proposition 2.1 and Theorem 2.1. □

THEOREM 3.2. Let $\{T_t: t > 0\}$ be a strongly continuous contraction semigroup on $L_1(S, \mathcal{C}, m)$. Then conditions (A) and (B) are equivalent:

- (A) For each $f \in L_1$, w- $\lim_{t\to\infty} T_t f$ exists. (B) For each $f \in L_1$, $\lim_{n\to\infty} \int_0^\infty T_t f \mu_n(dt)$ exists for every $(\mu_n) \in \mathfrak{A}$, and is equal to w- $\lim_{t\to\infty} T_t f$.

PROOF. This follows from Theorem 1.3 in [6], Proposition 2.1, and Corollary 2.1. □

THEOREM 3.3 Let $\{T_t: t > 0\}$ be a strongly continuous semigroup of positive contractions on $L_p(X, \mathcal{Q}, m)$, where p is fixed, 1 . Then conditions (A)and (B) are equivalent:

- (A) For each $f \in L_p$, w- $\lim_{t\to\infty} T_t f$ exists.
- (B) For each $f \in L_p^r$, $\lim_{n\to\infty} \int_0^\infty T_t f \mu_n(dt)$ exists for each sequence $(\mu_n) \in \mathfrak{A}$, and is equal to w- $\lim_{n\to\infty} T_t f$.

PROOF. We observe that the conclusions in Theorem 2.1 and Corollary 2.1 remain valid if $B = L_p(X, \mathcal{C}, m)$, and "power bounded" and "uniformly bounded" in (α) and (β) are both replaced by "positive contraction". Theorem 3.3 now follows from Theorem 1.4 in [3] and Proposition 2.1.

ACKNOWLEDGEMENT. The author wishes to thank Professor M. Lin for valuable comments, and Professors Akcoglu and Sucheston for making available to him their papers [2] and [3] prior to publication.

REFERENCES

- 1. M. Akcoglu and L. Sucheston, On operator convergence in Hilbert space and in Lebesgue space, Period. Math. Hungar. 2 (1972), 235-244. MR 48 #4777.
- 2. —, On convergence of iterates of positive contractions in L_p spaces, J. Approximation Theory (to appear).
- 3. —, On weak and strong convergence of positive contractions in L_p spaces, Bull. Amer. Math. Soc. **81** (1975), 105–106.
- 4. J. R. Blum and D. L. Hanson, On the mean ergodic theorem for subsequences, Bull. Amer. Math. Soc. 66 (1960), 308-311. MR 22 #9572.
- 5. N. Dunford and J. T. Schwartz, Linear operators. I: General theory, Pure and Appl. Math., vol. 7, Interscience, New York, 1958. MR 22 #8302.
- 6. H. Fong and L. Sucheston, On a mixing property of operators in L_n spaces, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 28 (1974), 165-171.
- 7. D. L. Hanson and G. Pledger, On the mean ergodic theorem for weighted averages, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 13 (1969), 141-149. MR 40 #7423.
- 8. L. K. Jones and V. Kuftinec, A note on the Blum-Hanson theorem, Proc. Amer. Math. Soc. 30 (1971), 202-203. MR 43 #6742.
- 9. M. Lin, Mixing for Markov operators, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 19 (1971), 231-242. MR 46 #8317.
- 10. R. Sato, A note on operator convergence for semi-groups, Comment. Math. Univ. Carolinae **15** (1974), 127–129.

DEPARTMENT OF MATHEMATICS, BOWLING GREEN STATE UNIVERSITY, BOWLING GREEN, OHIO 43403