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HYPERSPACES OF HEREDITARILY
INDECOMPOSABLE PLANE CONTINUA

E. D. TYMCHATYN!

ABSTRACT. In this note we prove that if X is a hereditarily indecomposable
plane continuum then the hyperspace C(X ) can be embedded in Euclidean
3-space.

If X is a continuum, we let C(X) denote the hyperspace of subcontinua of
X with the Hausdorff metric. A continuous function p from C(X) into the reals
R is called a Whitney map if the following two conditions are satisfied:

(i)4 C Band 4 # B = w(4) < w(B).

(i1) w({x}) = 0 for each x € X.

Whitney maps always exist [4].
The aim of this note is to prove the following:

THEOREM. If X is a hereditarily indecomposable plane continuum, then C(X) is
embeddable in Euclidean 3-space R.

Transue [3] proved this theorem for the case in which X is a continuum
which does not separate the plane. Krasinkiewicz [2] proved that C(X) is
embeddable in R* J. T. Rogers recently announced the theorem in case X
separates the plane into finitely many disjoint regions. I am grateful to
Professor Krasinkiewicz for pointing out this problem to me. The argument
that is given here is a modification of that given by Transue [3].

PrOOF. We suppose without loss of generality that X is contained in the 2-
sphere S2. Let p € X. Let P denote the set of continua in X which contain p.
We prove that P is an arc in C(X).

It is clear that P is compact. If P is not connected then P can be written as
the union of two mutually separated sets H and K. We may suppose X € H.
Since K is compact there is a maximal element T of K (i.e. T is contained in
no other element of K). Then T is in the closure of H for if U is any
neighborhood of 7 in X, then the closure of the component of U which
contains T is an element of P which properly contains T and hence is in H.
This is a contradiction since H and K are separated sets. We have proved that
P is a continuum.
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If S, T € P then either S C T or T C S since X is hereditarily indecom-
posable and p € § N T. Thus, P is totally ordered under inclusion.

Let u: C(X) — R be a Whitney map. It follows from the above argument
that p|p carries P homeomorphically onto the interval [0, e] where ¢ = p(X).

Let ~ be the equivalence relation defined on X X [0,¢] whose equivalence
classes are the sets g X {u(g)} for g € C(X). To see that ~ is upper semicon-
tinuous, let (x;,4a;)) and (y;,q;)) be sequences in X X [0, ] such that for each
i, (x;,a;) ~ (y;,a;) and lim x; = x, lim y; = y and lim a; = a. For each i
there exists g; € C(X ) such that u(g;) = a; and x;, y; € g;. Without loss of
generality we may suppose the sequence g;) converges to g in the compact
space C(X). Since p is continuous p(g) = lim p(g;) = lim a; = a. Clearly,
x,y € gso(x,a) ~ (y,a) and ~ is upper semicontinuous.

Let U;, U, ... be the complementary components of X in S2. For each
k€ C(X)letk* =k U U{U]Bd (U;) C k} where Bd (U;) denotes the
boundary of U,.

We show that

()  k* = k U U{W|Wis a component of S?\k and W C S2\X}.

If Wis a component of S?\k then Bd (W) C k since k is closed and W is
open (since S? is locally connected). If W C S2\ X then W is a component of

SA\X and so W C k*. Let U C k*. Then Bd (U;) C k. Now, U, is a
component of S\ X. Since Bd (U ) C k, U;is also a component of S2\k This

completes the proof of (}).
Since X is indecomposable, X \k is connected. It follows that at most one

component of $2\k meets X and so S 2\k* is connected and open. Thus, k* is

closed. It is clear from the definition of k* that k* is connected. We have
proved that k* is a continuum which does not separate S2.

We extend ~ to an equivalence relation ~* on S?x [0,¢] where the
equivalence classes of ~* are points and the sets g* X {u(g)} where g
€ C(X). For each a € [0,¢] the members of u~!(a) are pairwise disjoint so
the sets g* X {u(g)} are also pairwise disjoint by the definition of g*. It
remains to prove that ~* is upper semicontinuous.

Let (x;,q;)) and (y;,4;)) be sequences in S2 X [0,¢] such that (x;,a;))
converges to (x,a), (y;,a;)) converges to (y,a) and for each i (x;,q;)
~* (y;,a;). If x; = y; for infinitely many i, then x = y and (x,a) ~* (,q).
We suppose, therefore, that for each i,x; # y;. For each i let g; € C(X) such
that x;, y; € g* and u(g;) = a;. We may also suppose that the sequence g;)
converges to g in C(X). Since p is continuous,pu(g) = lim u(g;) = lim a; = a.
If for each i, x; € X, then x; € g; and x € g. Let us suppose now that for
each i, x; € X. For each let Uj, be the component of S\ X which contains
x;. Then Bd (U,) C g If x € X then either x € g; or g, separates x and x; in
S In either case x € lim g; = g. If x € U for some k then for all suﬂ‘icwnt-
ly large i, x; € U, and U, = U;. Hence Bd (U;,) = Bd (U,) C g; for all
sufficiently large i.In partlcular Bd (U,) = lim Bd (U,) Climg; =g In all
cases x € g . Similarly, y € g* and so (x,a) ~* (y, a) This completes the
proof that ~* is upper semicontinuous.

Let = be the natural projection of S2 X [0,¢] onto the quotient space
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(8% x [0,¢])/~* . Let h: (S2 X [0,¢])/~* — [0, €] be such that h(n(x,a)) = a.
Then 4 is O-regular as in the proof of Theorem 8 in [1]. By Moore’s theorem
h~1(8) is a 2-sphere for each & such that 0 < & < e and h~!(¢) is a point. It
follows from Theorem 7 in [1] that (S2 X [0, €])/~* is a 3-cell. This completes
the proof of the theorem for (X X [0,¢])/~ is homeomorphic to C(X) and
(X % [0,€])/~ is embedded in the 3-cell (S2 X [0,¢])/~* .
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