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HYPERSPACES OF HEREDITARILY
INDECOMPOSABLE PLANE CONTINUA

E. D. TYMCHATYN1

Abstract. In this note we prove that if A" is a hereditarily indecomposable

plane continuum then the hyperspace C(X ) can be embedded in Euclidean

3-space.

If A1 is a continuum, we let C(X) denote the hyperspace of subcontinua of

X with the Hausdorff metric. A continuous function p from C(X) into the reals

R is called a Whitney map if the following two conditions are satisfied:

(i)A G B and A ¥= B => ¡i(A) < n(B).
(ii) p({x}) = 0 for each x G A\

Whitney maps always exist [4].

The aim of this note is to prove the following :

Theorem. If X is a hereditarily indecomposable plane continuum, then C(X) is

embeddable in Euclidean 3-space R3.

Transue [3] proved this theorem for the case in which X is a continuum

which does not separate the plane. Krasinkiewicz [2] proved that C(X) is

embeddable in R4. J. T. Rogers recently announced the theorem in case X

separates the plane into finitely many disjoint regions. I am grateful to

Professor Krasinkiewicz for pointing out this problem to me. The argument

that is given here is a modification of that given by Transue [3].

Proof. We suppose without loss of generality that X is contained in the 2-

sphere S2. help G X. Let P denote the set of continua in X which contain p.

We prove that P is an arc in C(X).

It is clear that P is compact. If P is not connected then P can be written as

the union of two mutually separated sets H and K. We may suppose X G H.

Since K is compact there is a maximal element T of K (i.e. T is contained in

no other element of K). Then T is in the closure of H for if U is any

neighborhood of T in X, then the closure of the component of U which

contains T is an element of P which properly contains T and hence is in H.

This is a contradiction since H and K are separated sets. We have proved that

P is a continuum.
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If S, T G P then either S G T or T G S since X is hereditarily indecom-

posable and p G S n T. Thus, P is totally ordered under inclusion.

Let jb: C(X) -* R be a Whitney map. It follows from the above argument

that [i\p carries 7^ homeomorphically onto the interval [0, e] where e = ¡i(X).

Let ~ be the equivalence relation defined on A"X [0, e] whose equivalence

classes are the sets g X [fi(g)} for g G C(A'). To see that ~ is upper semicon-

tinuous, let (x¡,a¡)) and (y¡,a¡)) be sequences in A X [0,e] such that for each

/, (x¡,a¡) ~ (yj,a,) and lim x¡ = x, \imy¡ = y and lim a, = a. For each i

there exists g¡ G C(X) such that u(g,) = a, and x¡, y¡ G g¡. Without loss of

generality we may suppose the sequence g,) converges to g in the compact

space C(X). Since u is continuous fi(g) = lim p(g,) = lim a¡ = a. Clearly,

x, y G g so (x,a) ~~ (y,a) and ~ is upper semicontinuous.

Let Ux, U2, ... be the complementary components of X in S2. For each

k G C(X)letk* = k U U{í/,|Bd (U¡) C k) where Bd (Í7¡) denotes the
boundary of U¡.

We show that

(t)       k* = k U  U{W\W is a component of S2\k and W G S2\X).

If W is a component of S2\k then Bd (W) G k since k is closed and W is

open (since S2 is locally connected). If W C S2\X then If is a component of

S2\X and so W G k*. Let U¡ C k*. Then Bd (U¡) G k. Now, U¡ is a
component of S2\X. Since Bd (U¡) G k, U¡ is also a component of S2\k. This

completes the proof of (f).
Since X is indecomposable, X\k is connected. It follows that at most one

component of S2\á: meets X and so S2\k* is connected and open. Thus, k* is

closed. It is clear from the definition of k* that k* is connected. We have

proved that k* is a continuum which does not separate S2.

We extend ~ to an equivalence relation —* on S2 X [0, e] where the

equivalence classes of ~* are points and the sets g* X {u(g)} where g

G C(X). For each a e [0,e] the members of ii~x(a) are pairwise disjoint so

the sets g* X (jit(g)} are also pairwise disjoint by the definition of g*. It

remains to prove that ~* is upper semicontinuous.

Let (x¡,a¡)) and (y¡,a¡)) be sequences in S2 X [0,e] such that (x¡,a¡))

converges to (x,a), (y¡,a¡)) converges to (y,a) and for each i,(x¡,a¡)

~* (yha,). If x¡ = y¡ for infinitely many /', then x = y and (x,a) ~* (y,a).

We suppose, therefore, that for each i,x¡ # y¡. For each i let g¡ G C(X) such

that x¡,y¡ G g* and ¡i(g¡) = a¡. We may also suppose that the sequence g,)

converges to g in C(X). Since ¡u is continuous,ju(g) = lim ¡i(g¡) = lim a, = a.

If for each i, x¡ G X, then x¡ G g¡ and x G g. Let us suppose now that for

each i, x¡ £ X. For each », let U¡t be the component of S2\X which contains

x¡. Then Bd (U.) G g¡.lf x G X then either x G g¡ or g¡ separates x and x¡ in

52. In either case x G lim g, = g. If x G Uk for some k then for all sufficient-

ly large /, x¡ G Uk and l¿ = Uk. Hence Bd (Uj) = Bd (Uk) G g, for ail
sufficiently large ;'. In particular Bd (Uk) = lim Bd (Í7- ) C lim g, = g. In ail

cases x G g*. Similarly, y E g* and so ix,a) ~* (y, a). This completes the

proof that ~* is upper semicontinuous.

Let it be the natural projection of S2 X [0, e] onto the quotient space
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(S2 X [0,e])/~* . Let h: (S2 x [0,e])/~* -> [0,e] be such that h(m(x,a)) = a.

Then h is 0-regular as in the proof of Theorem 8 in [1]. By Moore's theorem

h~x (8) is a 2-sphere for each 8 such that 0 < ô < e and h~x(e) is a point. It

follows from Theorem 7 in [1] that (S2 X [0, e])/—* is a 3-cell. This completes

the proof of the theorem for (X X [0, c])/— is homeomorphic to C(X) and

(X X [0,e])/~ is embedded in the 3-cell (S2 X [0,e])/~* .
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