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TWO Ä-CLOSED SPACES REVISITED

STEPHEN H. HECHLER1

Abstract. Recently, R. M. Stephenson has used the Continuum Hypothe-

sis to construct two Ä-closed, separable regular, first countable, noncompact

Hausdorff spaces. We show that the assumption of the Continuum Hypoth-

esis can be removed by replacing a lemma used in the original construction

to deal with arbitrary almost-disjoint families by the construction of a

particular almost-disjoint family. We also show that while these spaces

always have cardinality c, it is at least consistent with the negation of the

Continuum Hypothesis that there exist spaces with the same properties, but

which have cardinality K,. We conclude with some consistency results

concerning relationships between open filter bases and generalizations of the

notions of feeble compactness and Lindelöfness.

In [8, §4] R. M. Stephenson constructs two spaces (S,§>) and (T,?T) which

are both separable, first countable, feebly compact, not countably compact,

regular, and Hausdorff. Further, (S,i>) is not minimal regular, but if the

Continuum Hypothesis holds, then (S, S) is .R-closed and (T, 5") is strongly

minimal regular. We shall prove that the construction may be modified in such

a way as to insure that the spaces retain these latter properties without the

assumption of any special set theoretical hypotheses (other than the Axiom of

Choice which we shall assume throughout and without further mention), and

we shall prove that it is consistent with the negation of the Continuum

Hypothesis that these spaces have cardinality N,. These spaces are of impor-

tance because they appear to be the only known examples of separable first

countable Ä-closed spaces which are not compact. We shall also consider

consistency results concerning generalizations of the notions of feeble com-

pactness and Lindelöfness. These will give us, for example, conditions under

which every open filter over a space has an adherent point.

Although many of our results will be topological in nature, our construc-

tions will be set theoretical and will be self-contained. However, because

Stephenson's original construction, while very clever, is quite involved, we

shall not repeat it here, and a detailed knowledge of [8] would be required to

reconstruct the two Ä-closed spaces referred to in the title. In what follows, all

spaces are assumed to be at least Tx.

In Stephenson's construction, the Continuum Hypothesis is used to couple

two lemmas. One (Lemma 4.1) states that in a certain space there is a subset
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A of cardinality c such that if any open set contains c points of A, its closure

contains c points of the complement of A. Then in (S, S) and (T, 5" ) if one has

a regular filter base such that the closure of each member has cardinality c,

this may be used to prove that the "extreme points" are adherent points. On

the other hand, another lemma (Lemma 4.3) states that if the closure of some

member of an open filter base in these spaces is countable, then again the filter

base has an adherent point (though not necessarily one of the extreme points).

Thus if there are no cardinals between R0 and c, all cases are covered, and

every open filter base must have an adherent point. We shall show that if we

choose a particular member of the class of spaces to which Lemma 4.1 is

applied, then even if the Continuum Hypothesis fails, we may replace c by Xx

in the statement of the lemma. Hence if we use this particular space as the

building block for the final construction, all cases will again be covered.

We shall need some notation. Let N denote the set of natural numbers, let

Q denote the rationals, and let R denote the reals. For any set A let 9(A)

denote the power set of A, and let 9*(A) denote the set of infinite subsets of

A. For A and B denumerable, define

A G* B iff A -Bis finite, and A =* B iff A C* B and B Q* A.

Then define A to be almost contained in B iff A G* B, define A and B to be

almost disjoint iff their intersection is finite, and define an infinite set

•311 C 9* (A) to be a (maximal) almost-disjoint family over/I iff its elements are

pairwise almost disjoint (and it is not properly included in any other almost-

disjoint family over A). We shall abbreviate by referring to a maximal almost-

disjoint family as a MADF or a k-MADF if of cardinality k.

We now consider the class of spaces used by Stephenson (which he credits

to J. Isbell and S. Mrówka). As we shall need to examine the construction, we

repeat it here. Let 911 be any MADF over N, and let D = {pM : M G 91t} be

any new set of distinct points. Then Ba^ is defined to be the space whose set

of points is N U D with the topology generated by letting each point of N be

isolated and by letting a neighborhood of a point pM be any set containing pM

and all but finitely many members of M. Stephenson proves for an arbitrary

c-MADF 911 that:

Lemma 4.1 (Stephenson). There exists a subset A of D such that \A\ = c and

for every open subset U of B^

(1) \u n A\ = c -> 117 n (D - A)\ = c.

A study of the construction used shows us that to obtain the desired

properties in the final spaces without recourse to the Continuum Hypothesis,

it would be sufficient to prove that in this lemma (1) can be replaced by

(2) \Un A\ >N0^ \U n (D-A)\ > No-

While we do not know if this replacement can always be made, we shall

construct a particular family for which it can be, and we shall prove that this

new family has even stronger properties. To do this it will be necessary to

translate Lemma 4.1 with (1) replaced by (2) into a statement concerning 91L

It is not hard to see that this statement becomes
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Lemma 4.1*. There exists a subfamily & G 9H of cardinality c such that for

every set U G 9*(N)

\{A E &:A n U ^*0}\ >N0
(3)

-» \{A E (91 - &): A n Í/#*0}| >N0.

Before carrying out our construction it will be convenient to prove a variant

of the well-known theorem [2] which states that there exists a set of reals such

that neither it nor its complement includes a perfect set.

Lemma 1. There exists a set S G R such that if F is any uncountable closed

subset ofR, then \F n S\ = \F - S\ = c.

Proof. Since there are exactly c uncountable closed subsets of R, let

[Fa: a < c} be any listing of these sets such that each appears in the list c

times. Then, as usual, construct S inductively. That is, at stage a choose two

points in Fa which have not yet been used and put one in 5 and the other in

the complement of S. We leave the details to the reader.    □

We now construct % and in order to make use of the topology of R, we

construct it over Q rather than N. Thus for each real number r G R let 9* (Q)

be the set of bounded subsets A of Q such that the derived set A' oí A with

respect to R (the set of points in R which are accumulation points of A)

contains the single point r. In fact, such a subset is simply the range of a

sequence converging to r. Now, for each real number r let % be any fixed

almost-disjoint subfamily of 9*{Q) which is maximal with respect to 9*(Q),

i.e. which is not properly included in any other such almost-disjoint family. It

is easily seen that r^j implies that if F G %*(Q) and G G %*(Q), then F

and G are almost disjoint. Hence the family U{%: r G R) is almost disjoint,

and we may choose a maximal almost-disjoint family 'Jover Q which includes

it.

Using this family, we may replace Lemma 4.1 * by

Theorem 1. There exists a subfamily & C <5 of cardinality c such that for every

set U E <3>*(ß)

(4) \{A E Si A D U #*0}| > K0 -> \{A E (<»-&): A n U ¥=*0}\ = c.

Proof. Let S be the set from Lemma 1. Then for each s E S choose a fixed

set Fs E %, and let & = {Fs: s E S).

Now let U be any subset of Q, and let U again be the derived set of U in

R. It follows immediately from the construction that

r E U' ^3F E %(U D F #*0).

Thus if the set [A E &: A n U =£* 0} is uncountable, there is an uncounta-

ble subset of S contained in U'. This then implies that U' is a closed

uncountable subset of R, so there must exist a set T G (if' - S) of cardinality

c. But for each t G T there must be at least one set F, E if", C (3F— 6?) such

that U n Ft ¥=* 0.    D
Since (4) clearly implies (3), Stephenson's Theorem 4.4 generalizes to

Theorem 2. There exist two R-closed separable first-countable spaces (S, S)
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and (T, S) such that (S, S) is not minimal regular, (T, S) is strongly minimal

regular, and neither is countable compact.    □

We next consider questions concerning the cardinalities of these spaces.

Since each consists of a countable collection of copies of B^ suitably

connected, those we have looked at have cardinality c. However, it is certainly

consistent with the negation of the Continuum Hypothesis that there exist

maximal almost-disjoint families of cardinality less than c, and it is reasonable

to believe that we might use these families or modifications of them to

construct smaller spaces. Unfortunately, we do not have a version of Lemma

4.1 which requires only the existence of small families, so we shall be forced

to consider several other set theoretical hypotheses.

In order to simplify the statements of several of our theorems, we define a

K-Stephenson pair to be a pair of spaces constructed from a k-MADF as in [8]

and which, therefore, have cardinality k and satisfy the conclusions of

Theorem 2. Thus Theorem 2 states that there always exists a c-Stephenson

pair. We next reduce the question of the existence of K-Stephenson pairs to a

combinatorial question by noting that the construction depends upon the

existence of appropriate partitions of MADF's. Therefore, for any MADF 9TL

we define a set & C 911 of cardinality |9H - &\ = |91t| to be a (y, 8)-partition

iff for every set U G 9*(N)

\{A G â:A n í/#*0}| >y-^ \{A G (%-&): A n U #* 0}j > 8.

It then follows immediately from Stephenson's construction that

Lemma 2. If for an infinite cardinal k there exists a k-MADF which admits

either an (H0,H0)-partition or an (Hx,Hx)-partition, then there exists a k-

Stephenson pair.    □

We now consider some consistency results. In [3] we constructed a model of

Zermelo-Fraenkel set theory in which the Continuum Hypothesis failed, but

in which for each uncountable cardinal k < c there existed a k-MADF &k. We

now note that by standard forcing techniques it can be seen that each such &K

admits an (R0,»c)-partition. Since such a partition is necessarily an (K0, Re-

partition, we have

Theorem 3. It is consistent with the negation of the Continuum Hypothesis that

there exist a K-Stephenson pair for each uncountable cardinal k < c.    D

While we cannot say any more in the general case, we do have some further

results with respect to a specific cardinal K which we define to be the smallest

infinite cardinal k for which there exists a k-MADF. These will be based on

the fact that

Theorem 4. For every cardinal k < K every (K, K)-partition of a MADF is also

an (H0,K)-partition.

Proof. Let & be a (K, ̂ -partition of a MADF 9R, and let U G 9* (N ). Now

suppose that N0 < \{A G &: A n U #* 0}| < K. Then the family {(B

n U) G 9*(U): B G 911} is a MADF over í/and, therefore, has cardinality
at least K. Hence the family [B G (911 - &): B n U #* 0} also must have

cardinality at least K.    □



TWO «CLOSED SPACES REVISITED 307

Corollary 1. It is consistent with the negation of the Continuum Hypothesis

that every MA DF be usable as the basis of a Stephenson pair.

Proof. It is known that Martin's Axiom [5] implies that K = c and that it

is consistent [7] with the negation of the Continuum Hypothesis. But Stephen-

son's Lemma 4.1 restated says that every c-MADF admits a (c, c)-partition.

D

Corollary 2. // there exists a K-MADF which admits a (K, l)-partition, then

there exists a K-Stephenson pair.

Proof. It is easily seen that any (K, l)-partition must also be a (K, «re-

partition, and this, by Theorem 4, must be an (N0,N0)-partition.    □

We do not know if these partitions always exist, but we can obtain some

information by considering the

Hypothesis H(k,a). For every family 9 G 9*(k) of cardinality \ such that

each member of'S has cardinality k there exists a set G G k of cardinality k which

does not contain any member of'9as a subset.

It now follows that

Theorem 5. H(k, c) implies that every k-MADF admits a (k, l)-partition.

Proof. Let 911 = [Ma : a G k) be any k-MADF, and for each S E 9*(N)

let Fs = {a E k: Ma n S #* 0}. Then let 9- {/J: |#s| - k). Since \9 |
< c, by hypothesis there exists a set A C k of cardinality k which admits no

member of ^ as a subset. But from this it follows immediately that &

= [Ma: a E A} is a (k, l)-partition.    □

Corollary 3. H(K,c) implies that every K-MADF may be used to generate a

K-Stephenson pair.    □

Unfortunately, we do not know very much about H(k,a), although it is a

special case of some propositions considered by J. Baumgartner [1]. Thus we

must consider the

Hypothesis B(k,A). There exists a family 9 G 9(k) of cardinality X such that

each member of 9 has cardinality k but the intersection of any two distinct

members of 9 has cardinality less then k.

It is easily seen that B(k,à+) implies H(k, X). Baumgartner [1] has a series of

interesting results concerning the hypotheses B(k,a); we mention one example

here.

Theorem 6 (Baumgartner). //c is less than both 21*1 andHu, then B(Hx,2Kl)

holds.    O

Combining this with our previous results yields

Corollary 4. If c is less than both 2N| and Ha, then every HX-MADF can be

used to generate an Hx-Stephenson pair. In particular, if there exists an HX-MADF,

then there exists an Hx-Stephenson pair.    □

We conclude with a generalization of the following lemma in [8].

Lemma 4.3 (Stephenson). If CV" is any open filter base on a feebly compact
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space, then either it admits an adherent point or each of its members has

uncountable closure.    □

For each infinite cardinal k define a space T to be K-Lindelöf iff every open

cover of T admits a subcover of cardinality at most k and to be K-feebly

compact iff every open filter base of cardinality at most k admits an adherent

point. Now following Stephenson, we note that

Lemma 3. Every open filter base on a K-Lindelöf, K-feebly compact space admits

an adherent point.    D

We next consider the question of when a space is K-feebly compact. Define

a subset 5 of a space T to be s-dense (strongly dense) iff it is dense and every

infinite subset of it admits an accumulation point in T, and define a space T

to be s-separable iff it admits a countable s-dense subset. Finally, for any

infinite cardinal k consider the set theoretical

Hypothesis Ck. If 9 is any family of subsets of N such that \S\ < k and every

finite intersection of members of S is infinite, then there is an infinite subset F of

N which is almost contained in every member of S.

Although CK does not appear to be topological in nature, we have

Theorem 7. The hypothesis CK holds iff every s-separable Tx space is K-feebly

compact.

Proof. Suppose CK holds. Let Tbe an open filter base of cardinality k on

an i-separable Tx space T, and let S be a countable s-dense subset of T. Now

let 5={Kil S: V G "{}. Note that if any finite intersection of members of

S is finite, then at least one member of the intersection will be contained in

every member of Tand will, therefore, be an adherent point. If, however, every

such intersection is infinite, then we may apply CK to obtain an infinite subset

F of S which is almost contained in every member of % But because S is s-

dense, F must admit an accumulation point, and because T is Tx, this point

must be an adherent point of %

In the other direction, suppose that every i-separable 7^ space is K-feebly

compact, and let S be a family of at most k subsets of N such that every finite

intersection of members of S is infinite. We first note that those members of 'S

whose complements are finite cause no problems and may be disregarded.

Similarly, if the set D S is infinite, it is the set we are looking for, but if it is

finite, it may be deleted from N. Thus, without loss of generality, we may

consider the case where D S is empty and the complement of every member

of S is infinite. In this case let D = [pF: F G S} be a new set of points, and
construct a topological space T by setting T = D U N, letting points of TV be

isolated, and defining neighborhoods of points pF G D to be sets containing

pF and all but finitely many points of N — F. It is easily seen that T is a Tx

space and that S is an open filter base of cardinality at most k over T which

admits no adherent points. Thus T is not K-feebly compact and, therefore, is

not, by hypothesis, s-separable. But N is dense in T, and because it cannot be

5-dense, there must exist an infinite subset F of N which admits no accumula-

tion points in T. However, this implies that F must be almost contained in

every member of S.    O
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Combining this with Lemma 3, we have

Corollary 5. If CK holds and T is any s-separable Tx space, then:

(a) If T is K-Lindelöf, every open filter base on it has an adherent point.

(b) If there exists an open filter base Yon T with no adherent points, then the

closure of each member of'Y has cardinality greater than k.

(c) // T is K-Lindelöf and Hausdorff, then it is absolutely closed.

(d) If T is K-Lindelöf and regular, then it is compact.

Proof. Parts (b), (c) and (d) follow from part (a).    □

It can also be seen that by using Corollary 5(a) in one direction and

modifying the proof of Theorem 7 slightly by noting that the space T in the

second part is K-Lindelöf, we have

Corollary 6. The hypothesis CK is equivalent to the hypothesis that every open

filter base over a K-Lindelöf s-separable Tx space admit an adherent point.    O

Since CKq always holds, and Martin's Axiom implies that CK holds for all

k < c [5], we have

Corollary 7. Every s-separable space is feebly compact, and it is consistent

with the negation of the Continuum Hypothesis that every open filter base of

cardinality strictly less than c over an s-separable space admit an adherent point.

D

The hypotheses CK have been studied before and are known to be quite

strong. In particular, F. Rothberger [6] has shown that if CK holds, then 2"

must equal c, and the present author [4] has proven some results similar to

Corollary 5. It is also well known that if 91L is any k-MADF, then the family

[N — M: M G 9H} is a counterexample to CK. This latter is quite important

because without it we would be tempted to look for a cardinal k such that

there exists a k-MADF with a (k, K)-partition and for which À < k implies CA-

However, the only cardinal which could satisfy both these conditions is K, and

we have shown that in this case the (K, Repartition is sufficient by itself to

construct the K-Stephenson pair.

We wish to thank the referee for his many useful comments.
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