SYMMETRIC OVERMAPS

J. L. NOAKES

ABSTRACT. We prove periodicity theorems for the degrees of fibre-preserving maps of sphere bundles, and of projective space bundles.

This note is our first on the subject of fibre-preserving maps, called *overmaps*, and comes from [6]. I wish to thank my supervisor, Professor I. M. James, for encouragement and for considerable help with the exposition.

Let M, M' be connected compact oriented q-manifolds, where $q \ge 1$. For $K \ge 1$, let a transitive permutation group Γ on K letters permute the factors of M^K . A map from M^K is symmetric when it is constant on the orbits of Γ . The degree of a symmetric map is the Brouwer degree of its restriction $M \to M'$ to a factor.

Constant maps are symmetric and, if K = 1, all maps from M to M' are symmetric. If M is a rational cohomology sphere then, by [2], a necessary condition for there to be a symmetric map $M^K \to M'$ of nonzero degree is that q be odd or K = 1.

Let E, E' be oriented fibre bundles over a path-connected space B with fibres M, M'. We denote the fibre product $E \times_B E \times_B \cdots E$ (K factors) by $E^{(K)}$. An overmap $E^{(K)} \to E'$ is symmetric of degree m when its restriction to fibres is a symmetric map of degree m. In particular, if K = 1, all overmaps from E to E' are symmetric.

Let a group G act fibrewise on E, with the product action on $E^{(K)}$, and fibrewise orthogonally on an oriented orthogonal q-sphere bundle F over B. When q is odd we orient the real projective q-space bundle PF associated with F, and we let G act, so that the identification overmap $h: F \to PF$ is G-invariant of degree 2.

THEOREM 1. Let q be odd, let E' be F or PF, and let n be the degree of a G-invariant symmetric overmap from $E^{(K)}$ to E'. There is an integer $\alpha_K(E,E') \geqslant 0$ such that there is a G-invariant symmetric overmap $E^{(K)} \rightarrow E'$ of degree m if and only if $m \equiv n \mod \alpha$.

Taking E = E', K = n = 7 in Theorem 1, we obtain the following result.

COROLLARY 2. Let q be odd, and let E' be F or PF. There is an integer $\alpha(E') \ge 0$ such that there is a G-invariant overmap of degree m from E' to itself if and only if $m \equiv 1 \mod \alpha$.

Received by the editors April 16, 1975 and, in revised form, September 3, 1975.

AMS (MOS) subject classifications (1970). Primary 55C25, 55F25, 57A65, 55D99; Secondary 20N99.

In [7] we take G to be trivial, and we show that as E' varies $\alpha(E')$ takes all nonnegative integer values. In general, $\alpha(PF) \neq \alpha(F)$. For example, let G be trivial, and let F be the Whitney multiple (q+1)h of the identification $h: S^n \to RP^n$, where S^n , RP^n are the n-sphere, projective real n-space. Then $\alpha(F) = 1, 2$ according as $n \leq q, n > q$. However, PF is trivial and, by Corollary 2, $\alpha(PF) = 1$.

Let the fibre bundles E, E' be ex-spaces [4]. Thus E, E' are equipped with cross-sections s, s' which we suppose G-invariant. Also an overmap f: $E \to E'$ is an ex-map when fs = s'. We regard $E^{(K)}$ as an ex-space by means of the cross-section $s \times_B s \times_B \cdots s$. Let the sphere bundle F be an ex-space, and regard PF as an ex-space by requiring h: $F \to PF$ to be an ex-map.

THEOREM 3. Let q be odd, and let E' be F or PF. There is an integer $\beta_K(E, E')$ such that there is a G-invariant symmetric ex-map $E^{(K)} \to E'$ of degree m if and only if $m \equiv 0 \mod \beta$.

Taking E = E', K = 1 in Theorem 3, we obtain the following result.

COROLLARY 4. Let q be odd, and let E' be F or PF. There are G-invariant exmaps of all degrees from E' to itself.

When B is a connected compact oriented manifold, so are E, E', and the degree of an overmap from E to E' is its Brouwer degree. Hence, and by fibre-suspension, Corollary 4 generalizes [8, 1.5].

Let G be trivial, and let B be a connected finite CW-complex. When q is odd, and E' is F or PF, then $\beta_K(E, E')$ depends on the vertical homotopy classes of s, s', whereas $\alpha_K(E, E')$ evidently does not. For example, let $E = E' = B \times S^q$, B = S', and let s, s' correspond to $0, \nu \in \pi_r S^q$. Then $\beta_1(E, E')$ is the order of the Whitehead product $[\nu, \iota_q]$, where ι_q generates $\pi_q S^q$. However, $\alpha_1(E, E') = 1$.

Because of the main result of [1], the argument of [3, §2] also applies to real projective spaces. Corollary 4 then allows us to argue fibrewise, proving the following generalization of [3, 2.3].

COROLLARY 5. Let q be odd, and let E' be F or PF. Then $\beta_K(E, E')$ is positive. Further, no prime factor of $\beta_K(F, E')$ or of $\beta_K(PF, E')$ exceeds K.

Let B be a point. Taken with Corollary 5, Theorem 3 generalizes [3, 1.2] to include symmetric maps of projective spaces. By [5] $\beta_2(S^q, S^q)$ is $2^{(q+1)/2}$ or $2^{(q-1)/2}$ according as $q \equiv 3$, 5 or $q \equiv 1$, 7 mod 8.

To prove Theorems 1, 3, let O(q + 1) denote the group of orthogonal transformations of S^q . Let s, t be integers, and define an O(q + 1)-map $k'_i: S^q \times S^q \to S^q$ as follows.

(1)
$$k'_{t}(x,y) = (x \sin(1-t)\theta + y \sin t\theta) \csc \theta,$$
$$k'_{t}(x,x) = x, \quad k'_{t}(x,-x) = (-1)^{t}x,$$

where $x, y \in S^q$, $x \neq \pm y$, and $0 < \theta < \Pi$ is chosen so that $\cos \theta$ is the Euclidean inner product $(x \cdot y)$.

For $x, y \in S^q$ we have the following identities.

(2)
$$k'_{t}(x,y) = k'_{1-t}(y,x),$$

(3)
$$k'_{st}(x,y) = k'_{s}(x,k'_{t}(x,y)),$$

(4)
$$k'_t(x, -y) = (-1)^t k'_t(x, y),$$

(5)
$$k'_{-1}(x,y) = T_{a+2}(x)(j'_{-1}(y)),$$

where $T_{q+2}: S^q \to O(q+1)$ is the characteristic map [9, §23.4] for the tangent bundle to S^{q+1} , and where $j'_{-1}: S^q \to S^q$ is the suspension of the antipodal map on the hyperplane orthogonal to $p^q = (0, 0, ..., 1) \in S^q$.

We may also describe k'_t as follows. Given $x, y \in S^q$, let θ be the distance along a geodesic from x to y. On this geodesic, and at distance $t\theta$ from x, we have $k'_t(x,y)$. From this description, or by induction on t using (2), (3), (5), k'_t is continuous. We denote $k'_t|\{p^q\} \times S^q$ by $j_t: S^q \to S^q$.

(6) According as q is odd or even, j, has degree t or $(1 + (-1)^{t-1})/2$.

To prove (6), note that if t > 0 then $j_t = 1 + a + 1 + \cdots$ (t summands), where 1, a denote the identity, the antipodal map on S^q , and where '+' means head to tail addition along the p^q axis. Since a has degree $(-1)^{q+1}$ this proves (6) for t > 0. But $j_{-t} = j_{-1}j_t$ by (3), and j_{-1} , j_0 have degrees $(-1)^q$, 0. This completes the proof of (6).

By (4), (2), k'_t respects the identification $h: S^q \to RP^q$, and therefore projects to an O(q+1) - map $RP^q \times RP^q \to RP^q$ which we also refer to as k'_t . Let q be odd. By (6), (2), and since h is of degree 2, we have the following assertion.

(7) The restriction of k'_t to the first, second factor has degree 1 - t, t.

In the situation of Theorem 1, k'_t extends from fibres to a G-invariant overmap $g: E' \times_B E' \to E'$. If E' is an ex-space then g is an ex-map, since $k'_t(x,x) = x$ by (1).

Let $\Delta \colon E^{(K)} \to E^{(K)} \times_B E^{(K)}$ be the diagonal overmap. Given

(8) G-invariant symmetric overmaps $f_i : E^{(K)} \to E'$ of degrees m_i (i = 1, 2), the composite $g(f_2 \times_B f_1)\Delta$ is a G-invariant symmetric overmap of degree $tm_1 + (1 - t)m_2$.

Taken with the following remark, (8) proves Theorem 1.

Let A be a nonempty set of integers such that, if $m_1, m_2 \in A$

(9) then, for all integers t, $tm_1 + (1 - t)m_2 \in A$. Then, for some integers n, α , $A = \{m: m \equiv n \mod \alpha\}$.

In the situation of Theorem 3, we may read 'ex-map' for 'overmap' in (8). Taken with (9), this proves Theorem 3.

REFERENCES

- 1. Albrecht Dold, Homology of symmetric products and other functors of complexes, Ann. of Math. (2) 68 (1958), 54-80. MR 20 #3537.
- 2. H. Hopf, Über die Abbildunger von Sphären auf Sphären niedrigerer Dimension, Fund. Math. 25 (1935), 427-440.
- 3. I. M. James, Symmetric functions of several variables, whose range and domain is a sphere, Bol. Soc. Mat. Mexicana (2) 1 (1956), 85–88. MR 20 #4835.
 - 4. ----, Ex-homotopy theory. I, Illinois J. Math. 15 (1971), 324-337. MR 45 #6004.
- 5. I. M. James, Emery Thomas, H. Toda and G. W. Whitehead, On the symmetric square of a sphere, J. Math. Mech. 12 (1963), 771-776. MR 27 #4231.
- 6. J. L. Noakes, Some topics in homotopy theory, D. Phil. Thesis, University of Oxford, 1974, pp. 1-63.
 - 7. ——, Self-maps of sphere bundles (in preparation).
 - 8. Seiya Sasao, On degrees of mapping, J. London Math. Soc. (2) 8 (1974), 385-392.
- 9. N. E. Steenrod, *Topology of fibre bundles*, Princeton Math. Ser., vol. 14, Princeton Univ. Press, Princeton, N. J., 1951. MR 12, 522.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WESTERN AUSTRALIA, NEDLANDS, WESTERN AUSTRALIA 6009, AUSTRALIA