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SYMMETRIC OVERMAPS

J. L. NOAKES

Abstract.   We prove periodicity theorems for the degrees of fibre-preserv-

ing maps of sphere bundles, and of projective space bundles.

This note is our first on the subject of fibre-preserving maps, called

overmaps, and comes from [6]. I wish to thank my supervisor, Professor I. M.

James, for encouragement and for considerable help with the exposition.

Let M, M' be connected compact oriented a-manifolds, where a > 1. For

K > 1, let a transitive permutation group T on K letters permute the factors

of MK. A map from MK is symmetric when it is constant on the orbits of T.

The degree of a symmetric map is the Brouwer degree of its restriction

M —» M' to a factor.

Constant maps are symmetric and, if K = 1, all maps from M to M' are

symmetric. If M is a rational cohomology sphere then, by [2], a necessary

condition for there to be a symmetric map MK —* M' of nonzero degree is that

q be odd or K = 1.

Let E, E' be oriented fibre bundles over a path-connected space B with

fibres M, M'. We denote the fibre product EXB EXB ■ ■ ■ E (K factors) by

E^K>. An overmap E* ' —* E' is symmetric of degree m when its restriction to

fibres is a symmetric map of degree m. In particular, if K = 1, all overmaps

from E to E are symmetric.

Let a group G act fibrewise on E, with the product action on E^K\ and

fibrewise orthogonally on an oriented orthogonal a-sphere bundle F over B.

When a is odd we orient the real projective a-space bundle PF associated with

F, and we let G act, so that the identification overmap h: F—> PF is G-

invariant of degree 2.

Theorem 1. Let q be odd, let E be F or PF, and let n be the degree of a G-

invariant symmetric overmap from E^K' to E. There is an integer a.K(E, E') > 0

such that there is a G-invariant symmetric overmap E^K' —* E' of degree m if and

only if m = n mod a.

Taking E = E', K = n = 1 in Theorem 1, we obtain the following result.

Corollary 2. Let q be odd, and let E be F or PF. There is an integer

a(E') > 0 such that there is a G-invariant overmap of degree m from E to itself

if and only if m = 1 mod a.
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In [7] we take G to be trivial, and we show that as E' varies a(£") takes all

nonnegative integer values. In general, otiPF) =£ a(F). For example, let G he

trivial, and let F he the Whitney multiple iq + X)h of the identification

h: S" -> RP", where S", RP" are the «-sphere, projective real «-space. Then

a(F) = 1, 2 according as n ^ q, n ]> q. However, PF is trivial and, by

Corollary 2, a(/>F) = 1.

Let the fibre bundles E, E' be ex-spaces [4]. Thus E, E' are equipped with

cross-sections s, s' which we suppose G-invariant. Also an overmap/: E —» E'

is an ex-map when fs = s'. We regard E^K' as an ex-space by means of the

cross-section s XB s XB ■ ■ ■ s. Let the sphere bundle F he an ex-space, and

regard PF as an ex-space by requiring h: F —> PF to be an ex-map.

Theorem 3. Let q be odd, and let E' be F or PF. There is an integer ßK(E, E')

such that there is a G-invariant symmetric ex-map E^ ' -» E' of degree m if and

only ifm = 0 mod ß.

Taking E = E', K = 1 in Theorem 3, we obtain the following result.

Corollary 4. Let q be odd, and let E' be F or PF. There are G-invariant ex-

maps of all degrees from E' to itself.

When B is a connected compact oriented manifold, so are E, E', and the

degree of an overmap from E to £" is its Brouwer degree. Hence, and by fibre-

suspension, Corollary 4 generalizes [8, 1.5].

Let G he trivial, and let B he a connected finite CW-complex. When q is

odd, and £" is F or PF, then ßK(E,E') depends on the vertical homotopy

classes of s, s', whereas aK(E,E') evidently does not. For example, let

E = E' = B X Sq, B = S'', and let s, s' correspond to 0, v G mrSq. Then

ßx (E, £") is the order of the Whitehead product [v, iq], where iq generates mq Sq.

However, ax(E,E') = 1.

Because of the main result of [1], the argument of [3, §2] also applies to real

projective spaces. Corollary 4 then allows us to argue fibrewise, proving the

following generalization of [3, 2.3].

Corollary 5. Let q be odd, and let E' be F or PF. Then ßK(E, £") is positive.

Further, no prime factor of ßK(F,E') or of ßK(PF,E') exceeds K.

Let B he a point. Taken with Corollary 5, Theorem 3 generalizes [3, 1.2] to

include symmetric maps of projective spaces. By [5] ß2(Sq, Sq)

is 2(<?+1)/2 or 2(<?_1)/2 according as q = 3, 5 or q = 1,7 mod 8.

To prove Theorems 1, 3, let 0(q + 1) denote the group of orthogonal

transformations of Sq. Let s, t he integers, and define an 0(q + l)-map

k't: Sq X Sq —» Sq as follows.

k'Ax.y) = (x sin(l - t)0 + y sin tO) cosec 9,

k',(x,x) = x,    k'tix,-x) = i-X)'x,

where x, y G Sq, x ¥= ±y, and 0 < 6 < n is chosen so that cos 9 is the

Euclidean inner product (x • y).
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For x, y G S9 we have the following identities.

(2) k't(x,y) = k\_t(y,x),

(3) k'st(x,y) = k's(x,k't(x,y)),

(4) k't(x,-y) = (-l)'k'i(x,y),

(5) kLi(x,y) - Tq+2(x)(j'-i(y)),

where Tq+2: Sq ~* 0(q + 1) is the characteristic map [9, §23.4] for the tangent

bundle to Sq+X, and where/'_, : Sq -» Sq is the suspension of the antipodal

map on the hyperplane orthogonal top9 = (0,0,..., 1) G Sq.

We may also describe k't as follows. Given x, y G Sq, let 9 be the distance

along a geodesic from x to y. On this geodesic, and at distance tO from x, we

have AJfoj'). From this description, or by induction on t using (2), (3), (5), k\

is continuous. We denote k't\{pq) X Sq by/: Sq -* Sq.

(6) According as q is odd or even,/, has degree ? or (1 + (—1) ~ )/2.

To prove (6), note that if t > 0 then j, = 1 + a + 1 + • • • (r summands),

where 1, a denote the identity, the antipodal map on Sq, and where ' + '

means head to tail addition along the/?9 axis. Since a has degree (-1)? this

proves (6) for t > 0. Butyl, = j_xjt by (3), and j_x,j0 have degrees (-\)q, 0.

This completes the proof of (6).

By (4), (2), k't respects the identification h: Sq -* RPq, and therefore

projects to an 0(q + 1) - map RPq X RPq —> RPq which we also refer to as

k't. Let q be odd. By (6), (2), and since h is of degree 2, we have the following

assertion.

(7) The restriction of k \ to the first, second factor has degree 1 - t, t.

In the situation of Theorem 1, k\ extends from fibres to a G-invariant

overmap g: E' XB £" -* 7s". If E' is an ex-space then g is an ex-map, since

k't(x,x) = x by (1).

Let A: E^K) -* E^ XB £(Ar) be the diagonal overmap. Given

G-invariant symmetric overmaps/: E^ —> £" of degrees m¡

(i = 1,2), the composite g(f2 xBfx)A is a G-invariant symmetric

overmap of degree tmx + (1 — i)w2-

Taken with the following remark, (8) proves Theorem 1.

Let A be a nonempty set of integers such that, if mx, m2 G A

(9)        then, for all integers t, tmx + (\ - t)m2 G A. Then, for some

integers n, a, A = [m: m = n mod a).
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In the situation of Theorem 3, we may read 'ex-map' for 'overmap' in (8).

Taken with (9), this proves Theorem 3.
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