A CHARACTERISTICALLY NILPOTENT LIE ALGEBRA CAN BE A DERIVED ALGEBRA

EUGENE M. LUKS¹

ABSTRACT. An example is constructed of a Lie algebra whose derived algebra has only nilpotent derivations, thus answering a question of Dixmier and Lister.

- 1. Introduction. In a well-known paper in this journal [1], Dixmier and Lister constructed the first example of a characteristically nilpotent Lie algebra, that is, a Lie algebra with only nilpotent derivations. Upon proving that their example has the additional property that it is not the derived algebra of any Lie algebra, they pose the question: If L is any characteristically nilpotent Lie algebra, is it necessarily true that L cannot be a derived algebra? Their proof shows that the answer is yes if every derivation of L maps L into its derived algebra. Leger and Tôgô [2] have shown the answer to be yes under certain other conditions, for example, if every derivation of L annihilates the center of L. The purpose of this paper is to resolve Dixmier and Lister's question in the negative. We construct an 18-dimensional Lie algebra, H, whose derived algebra, [H, H], is characteristically nilpotent.
- 2. The example. Let L denote the 16-dimensional Lie algebra over any field Φ , of characteristic not 2 or 5 with basis $\{x_1, x_2, \ldots, x_{16}\}$ and multiplication determined by

$$[x_1, x_2] = x_7$$
, $[x_1, x_3] = x_8$, $[x_1, x_4] = x_9$, $[x_1, x_5] = x_{10}$, $[x_1, x_6] = x_{13}$, $[x_1, x_7] = x_{15}$, $[x_1, x_8] = x_{16}$, $[x_2, x_3] = x_{11}$, $[x_2, x_4] = x_{12}$, $[x_2, x_5] = x_{15}$, $[x_2, x_6] = x_{14}$, $[x_2, x_7] = -x_{16}$, $[x_3, x_4] = -x_{13} - (9/5)x_{15}$, $[x_3, x_5] = -x_{14}$, $[x_3, x_6] = -x_{16}$, $[x_4, x_5] = 2x_{16}$, and $[x_i, x_j] = 0$ for $i + j \ge 10$.

Note that for distinct i, j, k, the products $[[x_i, x_j], x_k]$ are all 0; thus the Jacobi identity is immediately verified.

REMARK. Recall that an ideal in any Lie algebra, G, is called *characteristic* if it is invariant under all derivations of G. Note that, if I and J are characteristic ideals in G, then so are [I,J] and the transporter of I to J, i.e., $\{x \in G | [x,I] \subset J\}$.

Received by the editors February 24, 1975.

AMS (MOS) subject classifications (1970). Primary 17B30, 17B40.

Key words and phrases. Nilpotent Lie algebras, derivations of Lie algebras.

© American Mathematical Society 1976

¹ The author is pleased to acknowledge research support from Research Corporation.

PROPOSITION 1. L is characteristically nilpotent.

PROOF. For $1 \le i \le 16$, let I_i denote the ideal of L spanned by $\{x_j\}_{j \ge i}$. The following five statements show that I_2 , I_3 , I_4 , I_5 , I_6 are characteristic:

- (i) I_3 is the transporter of $[L, L] (= I_7)$ to 0.
- (ii) I_4 is the transporter of L to the center of $L(=I_9)$.
- (iii) I_2 is the transporter of [L, L] to $[I_4, I_4] (= I_{16})$.
- (iv) I_6 is the transporter of L to $[I_2, I_2] (= I_{11})$.
- (v) I_5 is the transporter of I_2 to $[L, I_6] (= I_{13})$.

Now let D be a derivation of L. We shall show D is nilpotent. Since I_2, \ldots, I_6 are characteristic (and $I_1 = L$),

$$D(x_i) \equiv c_i x_i \mod(I_{i+1}), \text{ for } 1 \leqslant i \leqslant 6, \text{ where } c_i \in \Phi.$$

Using $[x_1, x_2] = x_7$ and $[x_1, I_3] + [I_2, x_2] \subset I_8$, we get

$$D(x_7) = [Dx_1, x_2] + [x_1, Dx_2] \equiv (c_1 + c_2)x_7 \operatorname{mod}(I_8).$$

Similarly $[x_1, x_3] = x_8$ and $[x_1, I_4] + [I_2, x_3] \subset I_9$ imply

$$D(x_8) \equiv (c_1 + c_3)x_8 \mod(I_9).$$

Then

$$D(x_{16}) = D(-[x_3, x_6]) = (c_3 + c_6)x_{16},$$

$$D(x_{16}) = D(-[x_2, x_7]) = (c_1 + 2c_2)x_{16},$$

$$D(x_{16}) = D([x_1, x_8]) = (2c_1 + c_3)x_{16},$$

and

$$D(x_{16}) = D(\frac{1}{2}[x_4, x_5]) = (c_4 + c_5)x_{16},$$

so
$$c_3 + c_6 = c_1 + 2c_2 = 2c_1 + c_3 = c_4 + c_5$$
. Next

$$D(x_{15}) = D([x_1, x_7]) \equiv (2c_1 + c_2)x_{15} \operatorname{mod}(I_{16}).$$

In particular, this last relation implies that $D(x_{15})$ has no x_{14} component, which we use, noting $[I_3, x_5] + [x_2, I_6] \subset (x_{14}, x_{16})$, to get

$$D(x_{15}) = D([x_2, x_5]) \equiv (c_2 + c_5)x_{15} \operatorname{mod}(I_{16}).$$

Thus $2c_1 + c_2 = c_2 + c_5$. Also,

$$D(x_{14}) = D([x_2, x_6]) \equiv (c_2 + c_6)x_{14} \mod(I_{15}),$$

and

$$D(x_{14}) = D(-[x_3, x_5]) \equiv (c_3 + c_5)x_{14} \operatorname{mod}(I_{15}),$$

so $c_2 + c_6 = c_3 + c_5$. Finally,

$$D(x_{13}) = D([x_1, x_6]) \equiv (c_1 + c_6)x_{13} \operatorname{mod}(I_{14})$$

and

44 E. M. LUKS

$$D(x_{13}) = D(-[x_3, x_4] - (9/5)x_{15}) \equiv (c_3 + c_4)x_{13} \operatorname{mod}(I_{14}),$$

whence $c_1 + c_6 = c_3 + c_4$. The above relations on the c_i yield $c_1 = c_2 = \cdots = c_6 = 0$, i.e., $D(x_i) \subset I_{i+1}$ for $i = 1, 2, \ldots, 6$. Hence $D^6(L) \subset [L, L]$. Since L is nilpotent, D is a nilpotent derivation.

REMARK. An analogous proof shows that every automorphism of L is unipotent.

PROPOSITION 2. L is a derived algebra.

PROOF. Let D_1 denote the derivation of L such that

$$D_1(x_3) = x_7$$
, $D_1(x_4) = 2x_8$, $D_1(x_5) = 3x_9 + 2x_{11}$,
 $D_1(x_6) = 4x_{10} + 5x_{12}$, $D_1(x_8) = x_{15}$, $D_1(x_9) = 2x_{16}$,
 $D_1(x_{11}) = -x_{16}$, with $D_1(x_i) = 0$ otherwise.

Let D_2 denote the derivation of L such that

$$D_2(x_1) = x_2, D_2(x_2) = x_3, D_2(x_3) = x_4, D_2(x_4) = x_5,$$

$$D_2(x_5) = x_6, D_2(x_6) = 0, D_2(x_7) = x_8, D_2(x_8) = x_9 + x_{11},$$

$$D_2(x_9) = x_{10} + x_{12}, D_2(x_{10}) = x_{13} + x_{15}, D_2(x_{11}) = x_{12},$$

$$D_2(x_{12}) = -x_{13} - (4/5)x_{15}, D_2(x_{13}) = x_{14}, D_2(x_{14}) = -x_{16},$$

$$D_2(x_{15}) = 0, D_2(x_{16}) = 0.$$

One finds that $[D_1, D_2] = \operatorname{ad}(x_1)$. Hence we may extend L to a Lie algebra $H = (\tilde{D}_1, \tilde{D}_2) + L$ in which $[\tilde{D}_i, x_j] = D_i(x_j)$, $[\tilde{D}_1, \tilde{D}_2] = x_1$ and products in L are as before. Note that [H, H] = L.

REFERENCES

- 1. J. Dixmier and W. G. Lister, *Derivations of nilpotent Lie algebras*, Proc. Amer. Math. Soc. 8 (1957), 155-158. MR 18, 659.
- 2. G. Leger and S. Tôgô, Characteristically nilpotent Lie algebras, Duke. Math. J. 26 (1959), 623-628. MR 22 #5659.

DEPARTMENT OF MATHEMATICS, BUCKNELL UNIVERSITY, LEWISBURG, PENNSYLVANIA 17837