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A NOTE ON SOME PROPERTIES OF
A- FUNCTIONS

H. SARBADHIKARI

Abstract. This note deals with (M, •) functions for various families M. It

is shown that if M is the family of Borel sets of additive class a on a metric

space X, then (M, ») functions are just the functions of the form supyg(x,y)

where g: X x R -» R is continuous in y and of class a in x. If M is the class

of analytic sets in a Polish space X, then the (M, *) functions dominating a

Borel function are just the functions &Vipyg(x,y) where g is a real valued

Borel function on X2. It is also shown that there is an A -function /defined

on an uncountable Polish space X and an analytic subset C of the real line

such that/~'(C) € the a-algebra generated by the analytic sets on X.

1. Introduction. Let X be any set and M, N be classes of subsets of X.

Following Hausdorff, we call a real valued function/on X a function of class

(M, *) if [x: f(x) > c) is in M for every c. If [x: f(x) > c) is in N for every c,

/is said to be of class (*,N). Set (M,N) = (M, *) n (*,N).

If A is a metric space and M is the family of sets of additive Borel class a,

then functions of class (M, *) are called a~-functions; if X is Polish and M is

the family of analytic sets, they are called A -functions. We shall prove the

following theorems:

Theorem 1. Let f be a real valued function on a metric space X. Then f is an

<x~-function if, and only if, there is a real valued function g defined on X X R,

where R is the real line, such that g(x,y) is a continuous function of y for fixed x,

is of class a in x for fixed y andf(x) = supy g(x,y).

Theorem 2. Let X be a Polish space and let f be a real valued function on X

which is bounded below. Then f is an A-function if, and only if, there is a real

valued Borel function g on X2 such that f(x) = supyg(x,y).

Theorem 3. Let A be the a-algebra generated by analytic sets on an

uncountable Polish space X. There is an A-function f on X and an analytic subset

C of the real line such that f~x(C) £ A.

Theorem 3 answers in the negative a question raised by David Blackwell.

2. Proof of Theorem 1. We define a complete ordinary function system on a

set A' as a system F of real valued functions on X satisfying:
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(a) Every constant function is in F.

(b) If /, g G F, then max(/,g), min(/,g),/± g,f- g G F. If g does not

vanish anywhere, then f/g G F.

(c) If fn G F for all n and fn converges uniformly to /, then / G F.

We first prove the following:

Theorem 4. Let ¥ be a complete ordinary function system on a set X. Let P,

Q be the families of sets {x: h(x) > c}, (x: h(x) > c}, for h G F and c real,

respectively, f G (P, *) //, and only if, there is a real valued function g defined on

X X R such that g(x, y)

(a) is continuous in y for fixed x,

(b) is in F for fixed y; and

(c) supy gix,y) = f(x).

Proof. Suppose g(x,y) is a function on X x R satisfying conditions (a) and

(b) and suppose s\ipygix,y) exists and is/(x). Let c be any real number. Then

f(x) > c <=> 3y{g(x,y) > c) «* 3y{yis rational and g(x,y) > c}, since g(x,y)

is continuous in y. Thus

{x:f(x)>c}-    U      [x:g(x,r)>c).
r

r rational

For fixed r, g(x,r) G F and hence (x: g(x,r) > c} G P. Now as P is closed

under countable unions (cf. [1]), {x: f(x) > c} E P.

Conversely, suppose/ £ (P, *). It is shown in [1] that there is an increasing

sequence {/,} in F which converges to /. Define g on X X R by g(x,y)

= (f„+\(x) -/„(x))(|y| - n) + /„(x) for \y\ G [n,n + X]. It is easy to see that

g is well defined for all (x, y) and satisfies (a) and (b). As fnix) < g(x,y)

< fn+\(x) for \y\ G [n,n+ 1] and sup„/„(x) = f(x), supygix,y) = f(x).

Theorem 1 follows from Theorem 4 and the following:

Lemma. Let F be the family of all functions of class a on a Polish space X. Then

F is a complete ordinary function system and the sets of the form {x: f(x) > c), f

G F, c real, are just the sets of additive Borel class a.

Proof. It is shown in [3] that F forms a complete ordinary function system.

Any set of the form (x: f(x) > c), f G F, c real, is clearly of additive Borel

class a. Let A he any set of additive Borel class a. If a = 0, A is a cozero set

and hence A = {x: f(x) > 0} for some continuous function/. Let a > 0, then

we can write A = U%L\A„ where the A „'s are ambiguous of class a. Let

fix) — 2^=i 2~"IAn(x) where IA¡¡ denotes the indicator function of An. As IA

is of class a, fis of class a and A = {x: f(x) > 0}.

3. Proof of Theorem 2. If f(x) = supyg(x,y) where g is Borel measurable, it

is shown in [3] that/is an /I-function. For this,/need not be bounded below.

Let /be an ,4-function on X such that/(x) > a for a fixed real number a.

Without loss of generality, we take X = R. Let {rn} enumerate all rationals. Let

A = {(x,y):f(x) > y). Then A = U„{(x,.y): fix) > rn>y} and hence is

analytic. Let B G R3 he a Borel set such that A = projection of B i.e.

ix,y) £ A «* 3ziix,y,z) G B). Let k: R3 -» R3 he defined by

fix,y,z)   iiix,y,z) G B,
kix,y,z) = <

{(a,a,a)    otherwise .
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Then, as k is Borel measurable so is Tr2k where tt2 denotes projection to the

second coordinate and

, ,        \      fy   ü (*,y,z) e B,
TT2k(x,y,z) = < .

{a   otherwise .

Thus sup{yz)TT2k(x,y,z) = sup{yz){{y: y <f(x)} U {a}} = f(x). Let <f> be a

Borel isomorphism from 7? onto R2. Let h: R2 -* R be defined by h(x,y)

= (x,<¡>(y)) and let g(x,y) = ir2kh(x,y). Then g is Borel measurable and

f(x) = supyTT2kix,4>iy)) = supygix,y).

Remark. It is easy to see that Theorem 2 holds even if the condition "/ is

bounded below" is replaced by "/ dominates a Borel function". Thus an A-

function is of the form supygix,y) for some Borel measurable g if, and only if,

it dominates a Borel function. Equivalently, every A -function is of the form

sup gix,y) for some Borel measurable g if, and only if, given an ascending

sequence of analytic sets [An] such that UnKLxAn = X, there is an ascending

sequence [Bn) of Borel sets such that Bn G An and Dna=xBn = X. However,

we do not know if this condition always holds.

4. Proof of Theorem 3. In X, we put S0 = the family of open sets,

B0 = o-(So) and, for 0 < a < w,, Sa = £(a(U,<aS,)) and Ba = a(Sa)

where, for any family of sets G, a(G) denotes the a-algebra generated by G and

S(G) denotes the smallest family containing G and closed under operation A.

We call (Sa, *) functions ^„-functions. Theorem 3 is obtained from the

following more general theorem by putting a = 1.

Theorem 5. On any uncountable Polish space X, there is an S'a-jfunction f and

there is an analytic subset C of the real line such that f"  (C) £ Ba.

Proof. It is known that Ba is not closed under operation A (cf. [2]). Let

izn¡ ■■■nk) c Ba De sucn tnat U„e9ifl"= iZ„ ...„ E Ba, where 91 denotes the

family of all sequences of positive integers and n = inx,n2,...). We can find

countably many sets {^4,} in Sa such that for all n and k, Zn ...„ G ai{A¡}).

Let fix) = 2/*i (2/3')IA(x). As the sum of two ^„-functions, a positive

constant multiple of an ^-function and the limit of an increasing sequence of

^„-functions are all 5a-functions, / is an S^-function. As/~'(B) = a({^,})

where B is the Borel a-algebra on R, we can find, for all n and k, Bn ... „ E B

such that/"' (5„,...„t) = Z„,. ...LetC= U^aHEL.** •••«*• Th¿ C is
analytic and/-'(C) = U„e9inf=1Zn] ...„t « Ba.

Remark. Let X be any set and L a a-additive lattice on X containing X and

the null set, such that a(L) is not closed under operation A. We call a real

valued function / on X an L*-function if for every c, [x: fix) > c} G L.

Evidently/-'(B) C a(L). However, we can find an analytic set C and an L*-

function/such that/_1(C) (£ a(L). The proof is similar to that of Theorem 5.
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