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COMPACT COMPOSITION OPERATORS ON B(D)

DONALD W. SWANTON!

ABSTRACT. Let D be a domain in the complex plane, ¢: D — D be analytic,
and B(D) be the uniform algebra of bounded analytic functions on D with
maximal ideal space M. The composition operator C,(f) = f ¢ ¢ is compact
if and only if the weak* and norm closures of $(D) coincide if and only if
whenever the Euclidean closure of ¢(D) contains a point A of the boundary
of D then each f € B(D) extends continuously from ¢(D) to A. If C, is
compact, then either ¢ fixes a point of D or else the adjoint of Cs fixes a point
of M.

Introduction. Let D be a domain in the complex plane which supports
nonconstant bounded analytic functions and let B(D) be the uniform algebra
of bounded analytic functions on D with supremum norm. Each analytic
¢: D — D defines the composition operator C, on B(D) by C,(f) = fo ¢ for
all f € B(D). Each composition operator is clearly linear and norm reducing.

This paper consists of two parts. In §1 we characterize compact composition
operators on B(D), and in §2 we discuss fixed points of ¢ when C, is compact.

1. Compact operators. For each z € D denote by Z the evaluation functional
on B(D) defined by 2(f) = f(z) for each f € B(D). We can then consider D
as a subset of B(D)*. For each C, denote by &: B(D)* - B(D)* the adjoint
of C, defined by

®(T)(f) = T(C,(f)). f€ B(D), T € B(D)*,

so that if T is Z for any z € D we have
D) (f) = HCy(f)) = (S > $) = f(8(2)) = (#(2)) (f),

and the function ¢ is the restriction of ® to D.

We assume that each point A in the boundary 9D of D is essential for B(D)
in that there is some f € B(D) which does not extend to be analytic at A. The
domain D comes equipped with the usual topology from the plane induced by
the chordal metric so that every closed subset of D is compact. D also inherits
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both the weak* and norm topologies from B(D)*, and all three topologies
agree inside D. For each subset 4 of D denote by cl A and w* - cl 4 the
Euclidean and weak* closures of 4.

D is a subset of the maximal ideal space M of B(D) but does not exhaust all
of M. For each A € cl D the fiber M, over A is the set of all m € M for which
m(f) = f(A) whenever f € B(D) extends to be analytic at A. Denote by B, the
closed unit ball of B(D). A linear operator L on B(D) is called compact if L(B;)
is relatively norm compact. Finally if {f,} is a sequence in B(D) with
f, = f € B(D) uniformly on compact subsets of D we write f, = f ucc.

The following theorem of H. J. Schwartz [4, Theorem 2.5] can be proved by
a simple normal families argument.

1.1. THEOREM. A composition operator C, is compact on B(D) if and only if for
every sequence { f,} in By with f, = 0 ucc we have ||f, o ¢|| = 0.

Call a set 4 in M a peak set for B(D)Aif there is some f € B, whose Gel’ fand
transform f is equal to 1 on 4 while |f(m)| < 1 forallm € M — A.

1.2. COROLLARY. Let D be a domain for which the fiber M, is a peak set for
B(D) for every A € 3D. Then C, is compact on B(D) if and only if cl $(D)
contains no point of dD.

When there is a A € 9D whose fiber is a nonpeak set the situation is more
complicated. T. W. Gamelin and J. Garnett [2] showed that if M, is not a peak
set, then there is an unique my € M, called the distinguished homomorphism
with a representing measure living in M — M, . If we denote by P(m,,¢) the
open &-ball about m, in the norm of B(D)*, then P(my,e) N D is nonempty
for all e > 0. Moreover {A} is a singleton component of 9 D.

We call a sequence {z,} in D an interpolating sequence if for every {s,} € I®
there is some f € B(D) with f(z,) = s, for all n. Interpolating sequences and
distinguished homomorphisms are related by the following theorem [2,
Theorem 3.5].

1.3. THEOREM. If {z,} is a sequence in D which converges to some A € 9D,
then either {z,)} contains an interpolating sequence or else M, is a nonpeak set, and
{2,) converges to the distinguished homomorphism my_in the norm of B(D)*.

1.4. COROLLARY. The closure of D in the norm of B(D)* is the union of D and
the set of distinguished homomorphisms.

1.5. CorOLLARY. If C, is compact on B(D), then (D) contains no interpolating
sequences.

Denote by A the set of distinguished homomorphisms, and for each ¢ > 0
define

K, =w*-cl¢(D)— U P(my,e).
my EA

1.6. THEOREM. The following are equivalent:

(a) C, is compact on B(D).

(b) The norm and weak* closures of $(D) coincide.

(¢) The only weak* cluster points of ¢(D) in M — D are distinguished
homomorphisms.
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(d) For every e > O the set K, is a compact subset of D.

PROOF. (a) implies (b). Let C, be compact. We show that every weak* cluster
point of ¢(D) is a norm cluster point. If m € M is a weak* cluster point of
o(D) there is a net {¢(z,)} converging weak* to m. The net {z,} is an infinite
subset of the weak* compact M and therefore has a subnet {z } converging
weak* to some my, € M. The net {ZB} is bounded and weak* convergent and
C, is compact, so by [1, Theorem 6, p. 486, {®(Z5)} = {(¢(24))"} converges
m norm ®(m,). At the same time {¢(zB)} converges weak* to m so ®(m,)
=m.

(b) implies (c) implies (d). Trivial.

(d) implies (a). Let ¢ > 0. Without loss of generality we can assume & so
small that K, /g is nonempty. Let { f,} be a sequence in B, with f, = 0 ucc. K ¢/8
is a nonempty compact subset of D, so there exists a natural number N such
that n > N implies |f,(z)] < e/2forallz € K, 3. Each z € ¢(D) — K, /g lies
in some P(m,,¢/8), and since ¢(D) is connected the sets K, 5 and P(m,,e/4)
must overlap. Forany z € K, ;3 N P(my,e/4)andw € P(mx, ¢/8) we have at
the same time |f,(z)| < ¢/2 and |f,(z) — f,(w)| < ¢/2 whenever n > N, so
that | f,(w)| < e. The union of K, g and all the sets P(my,e/8) covers ¢(D), so
we have |£,(z)| < ¢ for any z € ¢(D) whenever n > N, and therefore C, is
compact by Theorem 1.1.

1.7. THEOREM. C, is compact on B(D) if and only if whenever the Euclidean
closure of ¢(D) contams a point A\ € 3D then A possesses the distinguished
homomorphism my, and each f € B(D) extends weak* continuously from ¢(D) to
A according to f(\) = my\(f).

Proor. If C, is compact on B(D) and cl ¢(D) contains A € 9D, then M,
must be a nonpeak set with distinguished homomorphism m,. Let {z,} be a
sequence in ¢(D) with z, — A. Corollary 1.5 says that {z,} cannot contain an
interpolating sequence, so by Theorem 1.3 {Z,} converges in norm to my . By
part (b) of Theorem 1.6 the weak* closure of ¢(D) contains no other points
of M, and each f € B(D) extends weak* continuously from ¢(D) to its weak*
closure and therefore from ¢(D) on A according to f(A) = my(f).

Conversely suppose C, is not compact. Then by part (c) of Theorem 1.6,
¢(D) must have a weak* cluster point m € M — D which is not a distin-
guished homomorphism. Then m € M, for some A € 9D. If A does not
possess a distinguished homomorphism, we are done. If there is my, € M, then
m # my.

If on the one hand m, is also a weak* cluster point of ¢(D) there are nets
{zo} and {wg} in D with {¢(z,)} and {#(wg)} converging to m and m,
respectively. Choose any f € B(D) with f(m) # f(m,). Then this f has distinct
weak* limits at A.

If on the other hand m, is not a weak* cluster point of ¢(D) then any {¢(z,,)}
converging to A contains an interpolating sequence {¢(z4)} by Theorem 1.3, so
there is an f € B(D) with f(¢(z,)) = (— 1) and this f is not continuous at A.

We can now construct an example of a compact composition operator C,
for which ¢l ¢(D) contains a point of 3 D.

1.8. ExampLE. The earliest examples of domains with nonpeak fibers are the
L-domains studied by L. Zalcman [5]. An L-domain is a domain obtained by
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excising from the punctured unit disc a sequence of disjoint closed discs
A(x,,r,) whose centers {x,} are contained in the positive x-axis and accumu-
late only at 0. Zalcman showed that if 3 7,/x, < oo, then M,, the fiber over
0, is a nonpeak set, and the complex measure p defined on 9D by du = ¢~ d¢
is finite and defines the distinguished homomorphism m by

mo(f) = 5= an(T“df.

Then my has a representing measure with no mass in My, and if A is a wedge
in D centered on the negative x-axis with a vertex at 0, then Gamelin and
Garnett showed [2, Theorem 5.1] that |7 — mgy|| — 0 as z — 0 through A.

Let D be an L-domain for which M, is a nonpeak set and ¢ the restriction
to D of a Riemann map from the disc to an open wedge in D with a vertex at
0. Then 0 € cl ¢(D), but C, is compact by Theorem 1.6 since each K, is a
compact subset of D.

2. Fixed points. For each analytic ¢: D — D we define the iterates ¢, of ¢
by ¢(2) = z, ..., ¢,41(2) = ¢(¢,(2)), .... If there is a point w € D such
that ¢(w) = w and ¢,(z) = w for all z € D we call w an attractive fixed point
of ¢.

2.1. THEOREM. If C, is compact on B(D) then either ¢ has an attractive fixed
point in D or else there is an unique A € 9D with distinguished homomorphism
my such that ¢,(z) = X for all z € D, and ®(my) = m,,.

PROOF. Suppose C, is compact and ¢ has no fixed point in D. We know ¢
cannot be a conformal automorphism of D, so according to a theorem of M.
H. Heins [3, Theorem 2.2] there is a set 4 in 3D with {¢,(z)} converging to 4
in the sense that all the limit points of {¢,(z)} are contained in 4 for all z € D.
A is either a singleton or a continuum. Since by Corollary 1.5 ¢(D) contains
no interpolating sequences 4 must contain only points with nonpeak fibers by
Theorem 1.4. Each such point is a singleton component of 3 D, so there must
be an unique A € 3D with distinguished homomorphism m, such that
¢,(2) = A for every z € D. Furthermore {(¢,(z))" } converges to m, in norm.

Now @ is norm continuous so by Corollary 1.4 ®(m, ) must be either a point
of D or a distinguished homomorphism. If ®(m, ) is a distinguished homomor-
phism it must be M, itself, and we are done.

If ®(my) = zy € D we define the iterates of ® in the same way we defined
the iterates of ¢, so that for z € D we have ®,(2) = (¢,(z)) . Then ®,,,(m))
= (¢4(29)) , and {®,,,(my)} converges in norm to mj, but

D,11(my) = ®(B,(my)) = (my)

in norm also, and we must have ®(m,) = m, contradicting ®(m,) = z.

2.2. EXAMPLE. We show that there are functions ¢ without fixed points
whose composition operators are compact. Let % < r<1land ¢(z) = rz. We
construct an L-domain D so that ¢(D) C D and C, is compact on B(D), but
¢ fixes no point of D.

About 7 there is a closed disc A] = A(r, ¢, ) such that ¢(A,) does not meet 4.
Inside ¢(A,) there is a disc A(r?,¢,). Let Ay = A(r2,¢,/16). Then inside ¢(A, )
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there is another disc A(r3,e;). Let A; = A(r3,e;/64), and so on with A,
= A(r",2‘2"e,,). Let D be the complement in the punctured disc of the union
of the A,’s. Then ¢(D) C D, and cl ¢(D) contains 0 € dD. Each ¢, < 1,

and} <r < 1,0

272, 1 1
r”n<222nrn<27<°°

and M, is a nonpeak set by [5, p. 255].

Then the Cauchy integral formula [5, §4] produces a series expansion for f
which can be shown to converge uniformly in ¢(D) U {0} by imitating the
proof of [5, Theorem 5.2], so that C, is compact by Theorem 1.7.

)
p)
n=1
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