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ON horn dim MU*(X X Y)

DUANE O'NEILL

Abstract.    Let p be a prime and BZ/p the classifying space for the cyclic

group Z/p of prime order p. A finite complex X is constructed such that

hom • dimMM(M6!(,(A' X BZ/p) > hom • dimMU^MUt(X)

+ hom • dimMUtMUt(BZ/p).

It  has   been   widely   expected   that

hom • dimMUMU*(X X Y)

g hom • dimMU^MU*(X) + hom • dimMyMU^Y)

for X and Y CW complexes of finite type and MUj( ) the complex bordism homol-

ogy functor [2], [5, (6)]. Of particular interest has been the case X = BZ/p = Y,

where BZ/p is the classifying space of the cyclic group Z/p of prime order p, as in

this case the inequality would imply an affirmative solution to a conjecture of

Conner and Floyd [1, pp. 130—131]. The following is therefore something of a

surprise.

Theorem. For each prime p there is a finite CW complex X with

hom • dimMUtMU*(X) = 1

such that

hom • dim^ MU*(X X BZ/p) g 3 > 1 + 1

= hom • dimMUtMUill(X) + hom • dimW[4 MU* (BZ/p).

I thank the referee for the clarity and brevity of the following.

To construct the relevant complex X we consider (for suitably large n) the

pushout diagram

M(p;n + 2(p - 1)) -p** M(pP+2;n + 2(p - 1))

A

M(p, n)-X
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where M(t; m) = Sm U, em+x, A is the map called a in [5] and $ in [3], and

pp+x is the map of degree pp+x on the bottom cell. There is thus a cofibration

M(p; n + 2(p- 1))   A*-pP+\ M(p, n) V M(pp+2 ;n + 2(p - I)) ^ X

giving an exact triangle

MU*(M(p,n + 2(p- 1)))   A'-p"+\ MUt(M(p,n)) ® MU^(M(p<'+2; n + 2(p - 1)))

9„\

MU¿X)

A moment's reflection shows that the horizontal map is monic, whence

3* = 0, and the resulting short exact sequence implies

Proposition. With the preceding notations, MU±(X) is generated by two

classes, u E MUn(X), w E MUn+2¡ X\(X), satisfying the relations pu = 0,

[CP(p - l)]u = pp+xw. Moreover horn • dimMUtMU*(X) = 1.

Proof. All that remains to be proved is the assertion about projective

dimension. To this end note there is a commutative diagram

MUit(M(p;n)) © MUif(M(pp+2;n + 2(p - 1))) -> MU*(X)->0

epic

H*(M(p;n);Z) © H*(M(pp+2;n + 2(p - 1));Z) -^ H*(X;Z)

^9*

Hjf(M(p,n + 2(p - 1)))

Since A* = 0 and pp+x is monic, it follows that jm is epic, whence the

commutative square shows the Thorn map ¡x: MU+(X) —» H+(X; Z) is epic and

the result follows from [2, 3.11].    D

Proof of Theorem. Recall [1, 46.3] that MU+ (BZ/p) is generated by classes

a2k-i e MU2k_x(BZ/p) of additive order pa+x where 2a(p - 1) < 2k - 1

< 2(a + l)(p — 1) [1, 36.1]. There is (among many others!) the relation [1, p.

145(*)]

[V2p2~2]ax +[CP(p- l)]a2Áp^x)+x E pMU^BZ/p),

where [V2p ~2] is a Milnor manifold of dimension 2p2 - 2. So write

[V2p2-2)ax =px- [CP(p - i)]a2p(p_x)+x.

From the Künneth exact sequence [2, 8.4], we see that

u ® ax ¥■ 0 E MU+(X X BZ/p).
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Note

[V2p2~2]u ® a, = u ® [K2'2-2]«,

- ir • (jn - [CP(iJ - l)]«2p(/,_1)+1)

= pu®x- [CP(p - l)]u ® a2p(/,_,)+i

= 0-p"+1w®a2/K;,_1)+1

= w®p'+1a2„(„-l)+l =M®0 = 0.

Therefore the annihilator ideal A(u ® ax) contains [V2p ~2]. From degree

considerations, u ® ax is primitive; so, by the Ballantine lemma [3, II, 2.1], it

follows that A(u ® <xx) also contains [C7>(p - 1)] and p. Hence,

hom • dimW(7t MU* (X X 7iZ/p) è 3

by [3, 5.3].    D
Remark. By replacing 7?Z/p by a suitable large lens space L(2m — \;p), we

obtain finite complexes X, Y with MU hom • dim 1, whose Cartesian product

has MU hom • dim at least 3.
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