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DYNAMICAL SYSTEMS
WITH CROSS-SECTIONS

DEAN A. NEUMANN

ABSTRACT. The problem of classifying dynamical systems (flows) with
global cross-sections in terms of the associated diffeomorphisms of the cross-
sections is considered. Suppose that, for i = 1, 2, ¢;is a C" flow (» > 0) on
the C” manifold M; that admits a global cross-section S; C M; with associat-
ed diffeomorphism (‘first return map’) d;. If rank (H;(M;;Z)) = 1, then
(M, ¢,) is C* equivalent (s < r) to (M,,¢,) if and only if d} is C* conjugate
to dy. If rank (H;(M,;Z)) # 1 and ¢, has a periodic orbit, then there are
infinitely many global cross-sections T, C M, of ¢,, such that the associated
diffeomorphisms are pairwise nonconjugate.

1. Introduction. In this paper we consider the problem of the classification
of dynamical systems (flows) with global cross-sections in terms of the
associated diffeomorphisms of the cross-sections.

Suppose that S is a C” manifold (connected, but not necessarily compact
and possibly with nonempty boundary; r > 1) and that d is a C" diffeomor-
phism of S. The suspension of d is a C" flow ¢: M X R = M on an (n + 1)-
manifold M defined as follows: M is the quotient space of S X R! obtained by
identifying each point (s, ) with (d(s),t + 1); ¢ is the flow on M induced by
the constant vector field (0, 1) on S X R! (cf. [8, §2]). We say that two
diffeomorphisms, say (S, d) and (S’,d"), are flow equivalent (C* flow equivalent,
1 < s < r) if the corresponding suspensions, (M, ¢) and (M’, ¢’), are topolog-
ically equivalent (C* equivalent) (i.., if there is a homeomorphism (C°*
diffeomorphism) h: M — M’ that maps orbits of ¢ onto orbits of ¢’ and
preserves the natural orientation of the orbits). It is known that if (M, ¢) is a
C’ flow that admits a global cross-section S, and d is the diffeomorphism of S
induced by ¢, then (M, ¢) is topologically equivalent to the suspension of 4 [8,
Theorem 2.2]. Also, if d and & are topologically conjugate (C* conjugate) (i.e.,
if hd = d’h for some homeomorphism (C* diffeomorphism) A: S — S’), then
(S,d) and (S’,d’) are (C*) flow equivalent. We are interested in conditions
under which the converse of the latter statement is true. Our main results are
stated in Theorems 1 and 2 below.

THEOREM 1. Suppose that d is a diffeomorphism of the C" manifold S with
suspension (M, ¢) and that rank H (M) = 1. Then (S, d) is (C*) flow equivalent
to a diffeomorphism (S',d") if and only if d' is (C*) topologically conjugate to d.
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Here H; (M) denotes singular homology with integer coefficients. The rank
of the abelian group 4 (not necessarily finitely generated) is defined to be the
maximum number of elements of A4/tA linearly independent over Z; 1A
denotes the torsion subgroup of 4.

We obtain as a corollary of Theorem 1 the following result of G. Ikegami
[5): “If S is compact and there is no homomorphism of m (S) onto the integers,
then (S,d) and (S’,d’) are flow equivalent if and only if d and d are topologically
conjugate.” We give examples in §3 to show that Theorem 1 is stronger than
Ikegami’s Theorem.

In fact the rank condition appears to be also necessary in order that a
suspension (M, ¢) admit an essentially unique section. We can prove this for
a large class of diffeomorphisms, but not in general:

THEOREM 2. Suppose that d is a diffeomorphism of the closed C"-manifold S
with suspension (M, ¢) and that rank H; (M) # 1. If d has at least one periodic
point then there exist infinitely many pairwise nonconjugate diffeomorphisms
(S,,d,), each flow equivalent to (S,d).

ReMARK. If the Euler characteristic of S is nonzero then any diffeomor-
phism of § has a periodic point [3]. Thus for such a manifold S, the suspension
(M,$) of a diffeomorphism d of S admits a unique (up to topological
conjugacy) section if and only if rank H{(M) = 1.

2. Proof of Theorem 1. Suppose that (M, ¢) and (M’,¢’) are suspensions of
(S,d) and (S’,d’) respectively, that h: M — M’ is a topological equivalence
of ¢ with ¢, and that rank H;(M) = 1. We will prove that d and &’ are
topologically conjugate.

p p
S x Rl —t—5' x R!
D, Pll

§ —

First note that the natural projection p: S X R! = M is the projection of a
regular covering space, with infinite cyclic group of covering transformations
[7, Theorem 8.2, p. 165]. It follows that m (M) decomposes as a semidirect
product 7 (S) - Z (the image p, m(S) is a normal subgroup of = (M) with
quotient Z); similarly m(M’) = %(S’) - Z. Hence the commutator subgroup
of m (M) is contained in the subgroup =;(S) (i.e., py m (S )). Thus a generator
z of the infinite cyclic factor of m (M) goes onto the generator of an infinite
cyclic direct summand of H,(M ) under the abelianizing (Hurewicz) homomor-
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phism a: m(M) = H;(M ), and = (S) is mapped by a onto the complementary
summand. Since rank H;(M) = 1 the complementary summand is the torsion
subgroup; it follows that = (S) consists of just those elements of = (M ) that
are torsion modulo the commutator subgroup. This is also true of =(S’)
C m(M’) and, as this subgroup is characteristic, we see that h,: m (M)
— m(M’) maps m(S) isomorphically onto m(S’). We can now apply the
lifting criterion to obtain a homeomorphism 4: S X R! —> S’ X R! that makes
the top rectangle in the accompanying diagram commute. Since # maps orbits of
¢ onto orblts of ¢/, it follows that h maps ‘vertical’ lines {s} x R! onto vertical
lines. Thus 7 induces a homeomorphism 4: § — S’ that makes the bottom rec-
tangle in the diagram commute.

In fact  is a conjugacy of d with &. To see this let 7 be the covering
transformation of S X R! defined by (s,7) = (d(s),t + 1), and let 7 on
S’ x R! be defined analogously. Then

hd(s) = py h(d(s), 1) = pihr(s,0) = pj'h(s, 0);

but i(s,0) € (p;) ' (A(s)), so 7'h(s,0) € (p;)"'(d'R(s)); that is, p)r'h(s,0)
= d’h(s) as required.

If the equivalence h: M — M’ is a C* diffeomorphism (1 < s < r), then A
is a C* diffeomorphism and so is #; i.e., under the rank assumption, (S,d) and
(8',d") are C* flow equivalent if and only if d and & are C* conjugate.

REMARK. Theorem 1 may be considerably extended in the case of contin-
uous flows. Let X be a connected, locally arcwise connected topological space
and let f be a homeomorphism of X. There is a continuous flow  on X X R!
defined by &(x,s,t) = (x,s + t), and ¢ induces a continuous flow ¢ on the
quotient space Q obtained by identifying each point (x,s) € X x R! with
(f(x),s + 1). The argument given above carries over verbatim to prove

THEOREM 1'. Suppose that f and f' are homeomorphisms of connected locally
arcwise connected spaces X and X', with corresponding suspensions (Q,
¢) and (Q', ¢'). Assume that rank H;(Q) = 1. Then ¢ is topologically equivalent
to ¢’ if and only if f is topologically conjugate to f’.

3. Ikegami’s Theorem. An immediate consequence of Theorem 1 is the
following result of Ikegami [5], [6]:

COROLLARY. Suppose that S is a closed C” n-manifold and that m (S) admits
no homomorphism onto the integers. Then (S,d) and (S’,d") are flow equivalent
if and only if d and d' are topologically conjugate.

ExaMmPLES. We give some examples to show that Theorem 1 is stronger than
Ikegami’s Theorem. In place of S we take the n-dimensional torus T"; let d be
a diffeomorphism of T". Then d, is an automorphism of the free abelian group
m(T") = Z" and hence may be represented by a matrix A € GL,(Z). (Note
that any 4 € GL,(Z) may be obtained in this way: if / is the linear
homeomorphism of R” represented by 4, then / induces a diffeomorphism d
of T" and we may choose a basis for = (T") with respect to which d, is
represented by A4.)

In the semidirect product m (M) = = (T") - Z, the action on = (T") of an
(appropriately chosen) generator z of the infinite cyclic factor is given by:
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z7Vsz = d,(s) (s € m(T™)). Hence (M) has presentation

<e1,...,e,,,z|[e,~,e~] = 1;z7Ye;z = dy(e);ij = 1,...,n),

where {e|, . ..,e,} is a basis for 7 (T") and [e;, ¢;] denotes the commutator of
e; and e;. It follows that H;(M) = B ® Z, where B has presentation

<el,...,e,,|[e,~,ej] = Lelde(e) = Lij = 1,...,n).

We see from this that 4 — I is a presentation matrix of B (i.e., there is a free
resolution 0 - Z" -i> Z" — B — 0 of B, with i represented by the matrix
A — I) and that B is completely determined by the invariant factors of 4 — I.
B is a torsion group if and only if no invariant factor of 4 — I is zero, i.e., if
and only if 1 is not an eigenvalue of 4. Thus we have proved:

Suppose d is a diffeomorphism of T" such that d, does not have 1 as an
eigenvalue. Then a diffeomorphism d' of T" is flow equivalent to d if and only if it
is topologically conjugate to d.

Of course, Ikegami’s Theorem does not apply to any of these examples.

4. Proof of Theorem 2. Assume that d is a diffeomorphism of the closed C"
manifold S with suspension (M,¢) and that rank H;(M) > 2. To find a
section S, € M for ¢ distinct from S, we construct a C" map P: M
- St S’I S, will be realized as the inverse image of a submanifold
W, CS Ixs v on which P is transverse regular.

We first show that there is an epimorphism #: m(S) — Z satisfying
ndy ! = m. Since m(M) = m(S) - Z we see that H(M) = B ® Z and that
the Hurewicz homomorphism a: m(S) - H;(M) maps m(S) onto B. By
computing m (M) from Van Kampen’s Theorem, we may check that a
generator z of the infinite cyclic factor can be chosen so that its action on
7(S) is given by: z7 'z = d;1(0) (6 € m(s)). Hence for any 6 € 7(S),

ady ' (0) = a(z7'o62) = a(o).

Since rank H; (M) > 2, there is an epimorphism 8: B — Z; we may take
™ =B e alys).

We may now construct P as follows. There is a C” map p: S — S! with
Px = m. Since p, = p* dy ! we see that there is a homotopy p:S—>8S'(tel

= [0,1]) of p to pd~! By [4, Lemma 2] we may assume that { p,} defines a cr
map of SX I onto S' and that p, = p for ¢ € [0,!3] and p, = pd~" for
t € [%5,1]. Then the map (s,7) = (p,(s),?) of S X I onto S! X I is compatible
with the identifications (s,0) < (d(s), 1) on § X I and (5,0) < (s,1) on S' X I,
and hence induces a C" map P: M — S' x S!.

We now want to determine a condition on a 1-dimensional submanifold
W C S'x 8! = T? in order that P be transverse regular on W. On both M
and T we consider only local coordinates that respect the “product” structure;
viz., on M we choose coordinates of the form (x, ), where x = (x,,...,x,) are
local coordinates on S and ¢t € J (open) C I (corresponding to a product
chart on S X R!), and on T2 coordinates of the form (s, 7), ¢ € J (open) C 1.
With respect to the corresponding bases {9/0x;,...,9/9x,,d/dt} of the
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tangent space T, » M and {9/ds,9/ 1} of Tp(xs) T2, the derivative dP of P is
represented locally by the matrix

o, .. Om
axl ax" at y

0 -+ 0 1

Xy
(@p,/0t,1) in 7},(”) T2. If we fix finite covers of M and T consisting of charts
of the above form, then

so that the tangent vector (0,...,0,1) (ie, 9/0f) in T, )M is taken onto

m = sup|dp,/dt| < o

(the supremum taken over all local representations of P with respect to these
fixed charts). The condition that P be transverse regular on W C T2 at
w € W is that for any (x,7) € P~!(w) we have (3p,/0t,1) & T, W. Thus P
will be transverse regular on W if, for allw € W and (a,b) € T, W, we have
|b/a| > m. It is clear that, for all sufficiently large integers k, there is a C”
simple closed curve W, C T? that satisfies this condition and winds k-times
around the S! x {0} factor of T? and once around the {sy} X S' factor.

Now fix such a submanifold W, C T? and let S, C M denote P~!(W,;).
Since P is transverse regular on W, S, is a codimension one C’-submanifold
of M that is transverse to the flow ¢ [1, Theorem 17.1]. It is also true that S,
is connected. We may see this as follows: T2 fibers over S! with fibers simple
closed curves “parallel” to W;; let g: T? — S! denote the projection of such a
fibering and let Q = g o P. We may assume that P is transverse regular on
each fiber of ¢, and hence that each point of S' is a regular value of Q. It
follows that Q fibers M over S' with each fiber diffeomorphic to S, (cf. [2,
§1.1]). Since g4: 7 (T?) » m(S') and B: m (M) — = (T?) are surjective, so
is Q. Because M is connected and Q, is surjective, we see that S; is
connected.

To prove that S is a global section for ¢ we must show that for any s € S,
there is a time 7 > 0 with ¢(s,7) € S, [8, §2]. We will need slightly more than
this to see that the diffeomorphism dj, induced on S; by ¢, is not conjugate to
d; viz., that, for all sufficiently large k, each orbit of ¢ crosses S, at least some
fixed number j > 2-times between successive crossings of S. But if & is large
enough then W, meets each “vertical” segment s’ X [0, 4] at least j-times in
S! x [0, 13]. It follows that each orbit segment s - [0, ¥3] = {¢(s, )|t € [0, 4]},
with s € S, meets S at least j-times, as asserted.

We now make use of our assumption that 4 has at least one periodic orbit.
Let m (m;) be the minimal period of periodic orbits of d (d) ). We have proved
that m;, > j - m, and hence that (S,d) and (Sj,d;) are not topologically
conjugate.
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