DYNAMICAL SYSTEMS WITH CROSS-SECTIONS

DEAN A. NEUMANN

ABSTRACT. The problem of classifying dynamical systems (flows) with global cross-sections in terms of the associated diffeomorphisms of the cross-sections is considered. Suppose that, for $i=1,2,\phi_i$ is a C' flow $(r \ge 0)$ on the C' manifold M_i that admits a global cross-section $S_i \subseteq M_i$ with associated diffeomorphism ('first return map') d_i . If rank $(H_1(M_1; \mathbf{Z})) = 1$, then (M_1,ϕ_1) is C^s equivalent $(s \le r)$ to (M_2,ϕ_2) if and only if d_1 is C^s conjugate to d_2 . If rank $(H_1(M_1; \mathbf{Z})) \ne 1$ and ϕ_1 has a periodic orbit, then there are infinitely many global cross-sections $T_i \subseteq M_1$ of ϕ_1 , such that the associated diffeomorphisms are pairwise nonconjugate.

1. Introduction. In this paper we consider the problem of the classification of dynamical systems (flows) with global cross-sections in terms of the associated diffeomorphisms of the cross-sections.

Suppose that S is a C' manifold (connected, but not necessarily compact and possibly with nonempty boundary; $r \ge 1$) and that d is a C^r diffeomorphism of S. The suspension of d is a C' flow ϕ : $M \times \mathbb{R}^1 \to M$ on an (n+1)manifold M defined as follows: M is the quotient space of $S \times \mathbb{R}^1$ obtained by identifying each point (s,t) with (d(s),t+1); ϕ is the flow on M induced by the constant vector field (0, 1) on $S \times \mathbb{R}^1$ (cf. [8, §2]). We say that two diffeomorphisms, say (S, d) and (S', d'), are flow equivalent (C^s) flow equivalent, $1 \le s \le r$) if the corresponding suspensions, (M, ϕ) and (M', ϕ') , are topologically equivalent (C^s equivalent) (i.e., if there is a homeomorphism (C^s diffeomorphism) h: $M \to M'$ that maps orbits of ϕ onto orbits of ϕ' and preserves the natural orientation of the orbits). It is known that if (M, ϕ) is a C' flow that admits a global cross-section S, and d is the diffeomorphism of S induced by ϕ , then (M, ϕ) is topologically equivalent to the suspension of d [8, Theorem 2.2]. Also, if d and d' are topologically conjugate (C^s conjugate) (i.e., if hd = d'h for some homeomorphism (C^s diffeomorphism) $h: S \to S'$), then (S,d) and (S',d') are (C^s) flow equivalent. We are interested in conditions under which the converse of the latter statement is true. Our main results are stated in Theorems 1 and 2 below.

THEOREM 1. Suppose that d is a diffeomorphism of the C^r manifold S with suspension (M, ϕ) and that rank $H_1(M) = 1$. Then (S, d) is (C^s) flow equivalent to a diffeomorphism (S', d') if and only if d' is (C^s) topologically conjugate to d.

Received by the editors July 25, 1975.

AMS (MOS) subject classifications (1970). Primary 58F99; Secondary 34C35, 54H20.

Here $H_1(M)$ denotes singular homology with integer coefficients. The rank of the abelian group A (not necessarily finitely generated) is defined to be the maximum number of elements of A/tA linearly independent over Z; tA denotes the torsion subgroup of A.

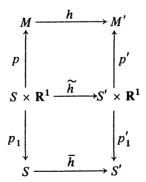
We obtain as a corollary of Theorem 1 the following result of G. Ikegami [5]: "If S is compact and there is no homomorphism of $\pi_1(S)$ onto the integers, then (S,d) and (S',d') are flow equivalent if and only if d and d' are topologically conjugate." We give examples in §3 to show that Theorem 1 is stronger than Ikegami's Theorem.

In fact the rank condition appears to be also necessary in order that a suspension (M, ϕ) admit an essentially unique section. We can prove this for a large class of diffeomorphisms, but not in general:

THEOREM 2. Suppose that d is a diffeomorphism of the closed C^r -manifold S with suspension (M, ϕ) and that rank $H_1(M) \neq 1$. If d has at least one periodic point then there exist infinitely many pairwise nonconjugate diffeomorphisms (S_n, d_n) , each flow equivalent to (S, d).

REMARK. If the Euler characteristic of S is nonzero then any diffeomorphism of S has a periodic point [3]. Thus for such a manifold S, the suspension (M, ϕ) of a diffeomorphism d of S admits a unique (up to topological conjugacy) section if and only if rank $H_1(M) = 1$.

2. **Proof of Theorem 1.** Suppose that (M, ϕ) and (M', ϕ') are suspensions of (S, d) and (S', d') respectively, that $h: M \to M'$ is a topological equivalence of ϕ with ϕ' , and that rank $H_1(M) = 1$. We will prove that d and d' are topologically conjugate.



First note that the natural projection $p: S \times \mathbb{R}^1 \to M$ is the projection of a regular covering space, with infinite cyclic group of covering transformations [7, Theorem 8.2, p. 165]. It follows that $\pi_1(M)$ decomposes as a semidirect product $\pi_1(S) \cdot \mathbb{Z}$ (the image $p_* \pi_1(S)$ is a normal subgroup of $\pi_1(M)$ with quotient \mathbb{Z}); similarly $\pi_1(M') = \pi_1(S') \cdot \mathbb{Z}$. Hence the commutator subgroup of $\pi_1(M)$ is contained in the subgroup $\pi_1(S)$ (i.e., $p_* \pi_1(S)$). Thus a generator z of the infinite cyclic factor of $\pi_1(M)$ goes onto the generator of an infinite cyclic direct summand of $H_1(M)$ under the abelianizing (Hurewicz) homomor-

phism $\alpha \colon \pi_1(M) \to H_1(M)$, and $\pi_1(S)$ is mapped by α onto the complementary summand. Since rank $H_1(M) = 1$ the complementary summand is the torsion subgroup; it follows that $\pi_1(S)$ consists of just those elements of $\pi_1(M)$ that are torsion modulo the commutator subgroup. This is also true of $\pi_1(S') \subseteq \pi_1(M')$ and, as this subgroup is characteristic, we see that $h_* \colon \pi_1(M) \to \pi_1(M')$ maps $\pi_1(S)$ isomorphically onto $\pi_1(S')$. We can now apply the lifting criterion to obtain a homeomorphism $\tilde{h} \colon S \times \mathbb{R}^1 \to S' \times \mathbb{R}^1$ that makes the top rectangle in the accompanying diagram commute. Since h maps orbits of ϕ onto orbits of ϕ' , it follows that \tilde{h} maps 'vertical' lines $\{s\} \times \mathbb{R}^1$ onto vertical lines. Thus \tilde{h} induces a homeomorphism $\tilde{h} \colon S \to S'$ that makes the bottom rectangle in the diagram commute.

In fact \overline{h} is a conjugacy of d with d'. To see this let τ be the covering transformation of $S \times \mathbb{R}^1$ defined by $\tau(s,t) = (d(s),t+1)$, and let τ' on $S' \times \mathbb{R}^1$ be defined analogously. Then

$$\bar{h}d(s) = p'_1 \tilde{h}(d(s), 1) = p'_1 \tilde{h}\tau(s, 0) = p'_1 \tau' \tilde{h}(s, 0);$$

but $\tilde{h}(s,0) \in (p'_1)^{-1}(\bar{h}(s))$, so $\tau'\tilde{h}(s,0) \in (p'_1)^{-1}(d'\bar{h}(s))$; that is, $p'_1\tau'\tilde{h}(s,0) = d'\bar{h}(s)$ as required.

If the equivalence $h: M \to M'$ is a C^s diffeomorphism $(1 \le s \le r)$, then \tilde{h} is a C^s diffeomorphism and so is \bar{h} ; i.e., under the rank assumption, (S, d) and (S', d') are C^s flow equivalent if and only if d and d' are C^s conjugate.

REMARK. Theorem 1 may be considerably extended in the case of continuous flows. Let X be a connected, locally arcwise connected topological space and let f be a homeomorphism of X. There is a continuous flow $\tilde{\phi}$ on $X \times \mathbb{R}^1$ defined by $\tilde{\phi}(x,s,t) = (x,s+t)$, and $\tilde{\phi}$ induces a continuous flow ϕ on the quotient space Q obtained by identifying each point $(x,s) \in X \times \mathbb{R}^1$ with (f(x),s+1). The argument given above carries over verbatim to prove

THEOREM 1'. Suppose that f and f' are homeomorphisms of connected locally arcwise connected spaces X and X', with corresponding suspensions (Q, ϕ) and (Q', ϕ') . Assume that rank $H_1(Q) = 1$. Then ϕ is topologically equivalent to ϕ' if and only if f is topologically conjugate to f'.

3. **Ikegami's Theorem.** An immediate consequence of Theorem 1 is the following result of Ikegami [5], [6]:

COROLLARY. Suppose that S is a closed C' n-manifold and that $\pi_1(S)$ admits no homomorphism onto the integers. Then (S,d) and (S',d') are flow equivalent if and only if d and d' are topologically conjugate.

Examples. We give some examples to show that Theorem 1 is stronger than Ikegami's Theorem. In place of S we take the n-dimensional torus T^n ; let d be a diffeomorphism of T^n . Then d_* is an automorphism of the free abelian group $\pi_1(T^n) \cong \mathbb{Z}^n$ and hence may be represented by a matrix $A \in GL_n(\mathbb{Z})$. (Note that any $A \in GL_n(\mathbb{Z})$ may be obtained in this way: if l is the linear homeomorphism of \mathbb{R}^n represented by A, then l induces a diffeomorphism d of T^n , and we may choose a basis for $\pi_1(T^n)$ with respect to which d_* is represented by A.)

In the semidirect product $\pi_1(M) = \pi_1(T^n) \cdot \mathbf{Z}$, the action on $\pi_1(T^n)$ of an (appropriately chosen) generator z of the infinite cyclic factor is given by:

 $z^{-1}sz = d_*(s)$ $(s \in \pi_1(T^n))$. Hence $\pi_1(M)$ has presentation

$$\langle e_1, \ldots, e_n, z | [e_i, e_j] = 1; z^{-1}e_i z = d_*(e_i); i, j = 1, \ldots, n \rangle,$$

where $\{e_1, \ldots, e_n\}$ is a basis for $\pi_1(T^n)$ and $[e_i, e_j]$ denotes the commutator of e_i and e_j . It follows that $H_1(M) = B \oplus \mathbb{Z}$, where B has presentation

$$\langle e_1, \ldots, e_n | [e_i, e_i] = 1, e_i^{-1} d_*(e_i) = 1, i, j = 1, \ldots, n \rangle.$$

We see from this that A - I is a presentation matrix of B (i.e., there is a free resolution $0 \to \mathbb{Z}^n \xrightarrow{i} \mathbb{Z}^n \to B \to 0$ of B, with i represented by the matrix A - I) and that B is completely determined by the invariant factors of A - I. B is a torsion group if and only if no invariant factor of A - I is zero, i.e., if and only if 1 is not an eigenvalue of A. Thus we have proved:

Suppose d is a diffeomorphism of T^n such that d_* does not have 1 as an eigenvalue. Then a diffeomorphism d' of T^n is flow equivalent to d if and only if it is topologically conjugate to d.

Of course, Ikegami's Theorem does not apply to any of these examples.

4. **Proof of Theorem 2.** Assume that d is a diffeomorphism of the closed C' manifold S with suspension (M,ϕ) and that rank $H_1(M) \ge 2$. To find a section $S_n \subseteq M$ for ϕ distinct from S, we construct a C' map $P: M \to S^1 \times S^1$; S_n will be realized as the inverse image of a submanifold $W_n \subseteq S^1 \times S^1$ on which P is transverse regular.

We first show that there is an epimorphism $\pi: \pi_1(S) \to \mathbb{Z}$ satisfying $\pi d_*^{-1} = \pi$. Since $\pi_1(M) \cong \pi_1(S) \cdot \mathbb{Z}$ we see that $H_1(M) \cong B \oplus \mathbb{Z}$ and that the Hurewicz homomorphism $\alpha: \pi_1(S) \to H_1(M)$ maps $\pi_1(S)$ onto B. By computing $\pi_1(M)$ from Van Kampen's Theorem, we may check that a generator z of the infinite cyclic factor can be chosen so that its action on $\pi_1(S)$ is given by: $z^{-1}\sigma z = d_*^{-1}(\sigma)$ ($\sigma \in \pi_1(S)$). Hence for any $\sigma \in \pi_1(S)$,

$$\alpha d_{\bullet}^{-1}(\sigma) = \alpha(z^{-1}\sigma z) = \alpha(\sigma).$$

Since rank $H_1(M) \ge 2$, there is an epimorphism $\beta: B \to \mathbb{Z}$; we may take $\pi = \beta \circ \alpha|_{\pi(S)}$.

We may now construct P as follows. There is a C' map $p: S \to S^1$ with $p_* = \pi$. Since $p_* = p_* d_*^{-1}$ we see that there is a homotopy $p_t: S \to S^1$ ($t \in I = [0,1]$) of p to pd^{-1} . By [4, Lemma 2] we may assume that $\{p_t\}$ defines a C' map of $S \times I$ onto S^1 and that $p_t = p$ for $t \in [0,1/3]$ and $p_t = pd^{-1}$ for $t \in [2/3,1]$. Then the map $(s,t) \to (p_t(s),t)$ of $S \times I$ onto $S^1 \times I$ is compatible with the identifications $(s,0) \leftrightarrow (d(s),1)$ on $S \times I$ and $(s,0) \leftrightarrow (s,1)$ on $S^1 \times I$, and hence induces a C' map $P: M \to S^1 \times S^1$.

We now want to determine a condition on a 1-dimensional submanifold $W \subseteq S^1 \times S^1 = T^2$ in order that P be transverse regular on W. On both M and T we consider only local coordinates that respect the "product" structure; viz., on M we choose coordinates of the form (x, t), where $x = (x_1, \ldots, x_n)$ are local coordinates on S and $t \in J$ (open) $\subseteq I$ (corresponding to a product chart on $S \times \mathbb{R}^1$), and on T^2 coordinates of the form (s, t), $t \in J$ (open) $\subseteq I$. With respect to the corresponding bases $\{\partial/\partial x_1, \ldots, \partial/\partial x_n, \partial/\partial t\}$ of the

tangent space $T_{(x,t)}M$ and $\{\partial/\partial s, \partial/\partial t\}$ of $T_{P(x,t)}T^2$, the derivative dP of P is represented locally by the matrix

$$\begin{bmatrix} \frac{\partial p_t}{\partial x_1} & \cdots & \frac{\partial p_t}{\partial x_n} & \frac{\partial p_t}{\partial t} \\ 0 & \cdots & 0 & 1 \end{bmatrix},$$

so that the tangent vector $(0, \ldots, 0, 1)$ (i.e., $\partial/\partial t$) in $T_{(x,t)}M$ is taken onto $(\partial p_t/\partial t, 1)$ in $T_{P(x,t)}T^2$. If we fix finite covers of M and T^2 consisting of charts of the above form, then

$$m = \sup |\partial p_t/\partial t| < \infty$$

(the supremum taken over all local representations of P with respect to these fixed charts). The condition that P be transverse regular on $W \subseteq T^2$ at $w \in W$ is that for any $(x,t) \in P^{-1}(w)$ we have $(\partial p_t/\partial t, 1) \notin T_w W$. Thus P will be transverse regular on W if, for all $w \in W$ and $(a,b) \in T_w W$, we have |b/a| > m. It is clear that, for all sufficiently large integers k, there is a C^r simple closed curve $W_k \subseteq T^2$ that satisfies this condition and winds k-times around the $S^1 \times \{0\}$ factor of T^2 and once around the $\{s_0\} \times S^1$ factor. Now fix such a submanifold $W_k \subseteq T^2$ and let $S_k \subseteq M$ denote $S^{-1}(W_k)$.

Now fix such a submanifold $W_k \subseteq T^2$ and let $S_k \subseteq M$ denote $P^{-1}(W_k)$. Since P is transverse regular on W_k , S_k is a codimension one C'-submanifold of M that is transverse to the flow ϕ [1, Theorem 17.1]. It is also true that S_k is connected. We may see this as follows: T^2 fibers over S^1 with fibers simple closed curves "parallel" to W_k ; let $q: T^2 \to S^1$ denote the projection of such a fibering and let $Q = q \circ P$. We may assume that P is transverse regular on each fiber of q, and hence that each point of S^1 is a regular value of Q. It follows that Q fibers M over S^1 with each fiber diffeomorphic to S_k (cf. [2, §1.1]). Since $q_*: \pi_1(T^2) \to \pi_1(S^1)$ and $P_*: \pi_1(M) \to \pi_1(T^2)$ are surjective, so is Q_* . Because M is connected and Q_* is surjective, we see that S_k is connected.

To prove that S_k is a global section for ϕ we must show that for any $s \in S_k$ there is a time $\tau > 0$ with $\phi(s,\tau) \in S_k$ [8, §2]. We will need slightly more than this to see that the diffeomorphism d_k , induced on S_k by ϕ , is not conjugate to d; viz., that, for all sufficiently large k, each orbit of ϕ crosses S_k at least some fixed number $j \ge 2$ -times between successive crossings of S. But if k is large enough then W_k meets each "vertical" segment $s' \times [0, \frac{1}{3}]$ at least j-times in $S^1 \times [0, \frac{1}{3}]$. It follows that each orbit segment $s \cdot [0, \frac{1}{3}] = \{\phi(s, t) | t \in [0, \frac{1}{3}]\}$, with $s \in S$, meets S_k at least j-times, as asserted.

We now make use of our assumption that d has at least one periodic orbit. Let $m(m_k)$ be the minimal period of periodic orbits of $d(d_k)$. We have proved that $m_k \ge j \cdot m$, and hence that (S, d) and (S_k, d_k) are not topologically conjugate.

BIBLIOGRAPHY

- 1. R. Abraham and J. Robbin, *Transversal mappings and flows*, Benjamin, New York and Amsterdam, 1967. MR 39 #2181.
- 2. W. Browder and J. Levine, Fibering manifolds over a circle, Comment.Math. Helv. 40 (1966), 153-160. MR 33 #3309.

- 3. F. B. Fuller, The existence of periodic points, Ann. of Math. (2) 57 (1953), 229-230. MR 14, 669.
- 4. S. T. Hu, On singular homology in differentiable spaces, Ann. of Math. (2) 50 (1949), 266-269. MR 10, 728.
- 5. G. Ikegami, On classification of dynamical systems with cross-sections, Osaka J. Math. 6 (1969), 419-433. MR 42 #1131.
- 6. —, Flow equivalence of diffeomorphisms. I, II, Osaka J. Math. 8 (1971), 49-69, 71-76. MR 44 #4780.
- 7. W. S. Massey, Algebraic topology: An introduction, Harcourt, Brace & World, New York, 1967. MR 35 #2271.
- 8. S. Smale, Stable manifolds for differential equations and diffeomorphisms, Ann. Scuola Norm. Sup. Pisa (3) 17 (1963), 97-116. MR 29 #2818b.

DEPARTMENT OF MATHEMATICS, BOWLING GREEN STATE UNIVERSITY, BOWLING GREEN, OHIO 43403