CORRIGENDUM AND ADDENDUM TO "PSEUDO-MATCHINGS OF A BIPARTITE GRAPH"

D. E. DAYKIN

Abstract

For an undirected bipartite graph G conditions on $\operatorname{deg} x$ $+\operatorname{deg} y$ for $x y \notin G$ ensure sets of independent lines extend to hamiltonian cycles.

Let X, Y be two finite sets each with $n \geqslant 2$ elements. Also let G be an undirected bipartite graph with points $X \cup Y$ and lines $x y$ with $x \in X, y$ $\in Y$. We will assume $\operatorname{deg} x+\operatorname{deg} y \geqslant \delta$ whenever $x y \notin G$. By HC and HP we mean hamiltonian cycle and path respectively. Consider the following:

Theorem 1. Every set of independent lines of G extends to a matching iff each connected component of G is a complete graph $K_{m, m}$.

Theorem 2. If $\operatorname{deg} v>\frac{1}{2} n$ for each point v then G has an $H C$.
Theorem 3. (i) If $\delta=l+m$ where $1 \leqslant l \leqslant m \leqslant n$ then every set of $\leqslant l$ independent lines of G extends to a set of m independent lines.
(ii) If $\delta=n+1$ every set of independent lines of G extends to a matching and every matching extends to an HP. Also some $n-1$ lines of any matching extend to an $H C$.
(iii) If $\delta=n+2$ every matching of G extends to an $H C$.
(iv) If $\delta=\frac{1}{3}(4 n+1)$ any set of independent lines of G extends to an $H C$.
(v) If $\delta=n+1+\frac{1}{2} k$ then any path of length k in G extends to an $H C$.

The proof of Theorem 1 is easy. Theorem 2 appeared in [3] but this writer introduced an error into the proof by claiming that $n+2$ can be replaced by $n+1$ in Theorem 3(iii). Once this is realised the necessary corrections for [3] are readily made. In fact a stronger form of Theorem 2 appeared in [6]. Clearly Theorem 3(ii) is stronger than Theorem 2. That G has an HC when $\delta=n+1$ was proved in [2]. It is interesting to compare the results here with those in [4]. Theorem 3(i) follows from the result about the largest set of independent lines in G (see [1, Theorem 4, p. 98]). We will need a result [7, Theorem 2D] of D. R. Woodall, whose kind suggestions improved an earlier version of this note, namely

Theorem 4. Let F be a directed graph on n vertices with out $\operatorname{deg} u+\operatorname{in} \operatorname{deg} v$ $\geqslant \Delta$ whenever $u \rightarrow v$ is not an arc of F.
(i) If $\Delta=n-1$ then F has a directed $H P$.
(ii) If $\Delta=n$ then F has a directed $H C$.

[^0]Notice that Theorem 4(i) follows from Theorem 4(ii) by adding a new point w to F and all possible arcs between w and F. In the same way Meyniel's Theorem [5] shows that if

$$
\text { out } \operatorname{deg} u+\text { in } \operatorname{deg} u+\text { out } \operatorname{deg} v+\operatorname{in} \operatorname{deg} v \geqslant 2 n-3
$$

whenever $u \rightarrow v$ and $v \rightarrow u$ are not arcs of F then F has a directed HP, but we will not need this stronger result.

Proof of Theorem 3(ii) and 3(iii). By Theorem 3(i) there is a matching; let X, Y be numbered so it is $x_{i} y_{i}$ for $1 \leqslant i \leqslant n$. Draw a directed graph F with vertices z_{1}, \ldots, z_{n} in which $z_{i} \rightarrow z_{j}$ if $i \neq j$ and $x_{i} y_{j} \in G$. Then F has $\Delta=\delta-2$. By Theorem 4 there is an HP or an HC in F which yields an HP or an HC as the case may be of G containing the given matching. For the last part of Theorem 3(ii) we suppose the HP is $x_{1}, y_{1}, x_{2}, y_{2}, \ldots, x_{n}, y_{n}$. We suppose $x_{1} y_{n} \notin G$ for otherwise we have the desired HC. Then $\operatorname{deg} x_{1}$ $+\operatorname{deg} y_{n} \geqslant n+1$ and there is an i in $1<i<n$ with $x_{1} y_{i}$ and $x_{i} y_{n}$ both in G, so

$$
x_{1}, y_{1}, x_{2}, y_{2}, \ldots, x_{i}, y_{n}, x_{n}, y_{n-1}, x_{n-1}, \ldots, y_{i+1}, x_{i+1}, y_{i}, x_{1}
$$

is the desired HC. To see that 3 (iii) is best possible consider two complete bipartite graphs with exactly one edge in common and take any matching which contains this edge.

Proof of Theorem 3(iv). Suppose $n \geqslant 3$ and there is a graph G, with the maximum possible number of lines, such that some set L of independent lines does not extend to an HC. Then there is a line $x y$ not in G and L extends to an HC in $G+x y$. Let the HC be

$$
x=x_{1}, y_{1}, x_{2}, y_{2}, \ldots, x_{n}, y_{n}=y, x_{1}
$$

Of course adjacent lines of this cycle are not both in L. Let I be the set of integers i such that $x y_{i}$ and $x_{i} y$ are both in G. Then $1, n \notin I$ and if $k=|I|$ we have $\frac{1}{3}(4 n+1) \leqslant \operatorname{deg} x+\operatorname{deg} y \leqslant n+k$ so $k \geqslant 2$. Also $x_{i} y_{i} \in L$ for $i \in I$ as otherwise

$$
x_{1}, y_{1}, x_{2}, y_{2}, \ldots, x_{i-1}, y_{i-1}, x_{i}, y_{n}, x_{n}, y_{n-1}, x_{n-1}, \ldots, y_{i+1}, x_{i+1}, y_{i}, x_{1}
$$

is an HC containing L. Next notice that if s is the smallest integer in I then $y_{s-1} x_{i+1} \notin G$ for any given $i \in I$, for otherwise

$$
\begin{aligned}
& x_{1}, y_{1}, x_{2}, y_{2}, \ldots, x_{s-1}, y_{s-1}, x_{i+1}, y_{i+1}, x_{i+2}, y_{i+2} \\
& \cdots, x_{n}, y_{n}, x_{s}, y_{s}, \ldots, x_{i}, y_{i}, x_{1}
\end{aligned}
$$

is an HC containing L. It follows that $\operatorname{deg} y_{s-1} \leqslant n-k$ and by symmetry $\operatorname{deg} x_{r+1} \leqslant n-k$ where r is the largest integer in I. Hence $2(n-k)$ $\geqslant \operatorname{deg} y_{s-1}+\operatorname{deg} x_{r+1} \geqslant \frac{1}{3}(4 n+1)$ which contradicts the earlier result $\frac{1}{3}(4 n+1) \leqslant n+k$.

Let $n=3 m+\lambda$ where $\lambda \in\{-1,0,1\}$, and $W \subset X$ with $|W|=m$, and $Z \subset Y$ with $|Z|=2 m-1$. Let G be the graph containing all lines except $x y$ with $x \in W, y \notin Z$. Then any matching of Z into $X \backslash W$ does not extend to an HC. This example has $\operatorname{deg} x+\operatorname{deg} y=\left[\frac{1}{3}(4 n+1)\right]-1$ and so shows

Theorem 3(iv) is best possible when $\lambda=-1$. Probably $\frac{1}{3}(4 n+1)$ can be replaced by its integral part for $n \geqslant 5$, but it seems to be hard to obtain this slight improvement.

Notice that if $\delta=n+|L| \geqslant n+2$ then L extends by (i) to a matching, which in turn extends to an HC by (iii), but is this result best possible?

Proof of Theorem 3(v). Suppose there is a graph G, with the maximum possible number of lines, such that some path P of even length k does not extend to an HC. Then there is a line $x y$ not in G and P extends to an HC in $G+x y$. The value of δ ensures we can choose an edge $x^{\prime} y^{\prime}$ in this HC but not in P, such that $x y^{\prime}, x^{\prime} y$ both lie in G. Hence we get a contradictory HC containing P. Examples with G consisting of two overlapping complete bipartite graphs and P filling the intersection, show the result best possible for $k \leqslant 2 n-4$. For $k \geqslant 2 n-3$ by inspection the graph must be complete if P is to extend to an HC.

References

1. C. Berge, Théorie des graphes et ses applications, Coll. Univ. Math., II, Dunod, Paris, 1958; English transl., Methuen, London; Wiley, New York, 1962. MR 21 \# 1608; 24 \# A2381.
2. J. A. Bondy and V. Chvátal, A method in graph theory, Discrete Math. (to appear).
3. Alan Brace and D. E. Daykin, Pseudo-matchings of a bipartite graph, Proc. Amer. Math. Soc. 42 (1974), 28-32. MR 48 \# 8299.
4. H. V. Kronk, Variations on a theme of Pósa, The Many Facets of Graph Theory (Proc. Conf., Western Michigan Univ., Kalamazoo, Mich., 1968), Springer, Berlin, 1969, pp. 193-197. MR 41 \# 99.
5. M. Meyniel, Une condition suffisante d'existence d'un circuit Hamiltonien dans un graphe oriente, J. Combinatorial Theory Ser. B 14 (1973), 137-147. MR 47 \#6546.
6. J. W. Moon and L. Moser, On Hamiltonian bipartite graphs, Israel J. Math. 1 (1963), 163-165. MR 28 \#4540.
7. D. R. Woodall, Sufficient conditions for circuits in graphs, Proc. London Math. Soc. (3) 24 (1972), 739-755. MR 47 \# 6549.

Department of Mathematics, University of Reading, Reading, Berkshire RG6 2AH, Great Britain

[^0]: Received by the editors June 11, 1974 and, in revised form, June 20, 1975.
 AMS (MOS) subject classifications (1970). Primary 05A05.

