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WHEN IS D + M COHERENT?

DAVID E. DOBBS1 AND IRA J. PAPICK

Abstract. Let V be a valuation ring of the form K + M, where K is a field

and M(# 0) is the maximal ideal of V. Let D be a proper subring of K.

Necessary and sufficient conditions are given that the ring D + M be

coherent. The condition that a given ideal of V be D + A/-flat is also

characterized.

1. Introduction and notation. Let F be a valuation ring of the form K + M,

where K is a field and M (¥= 0) is the maximal ideal of V. Let D be a proper

subring of K; let k, viewed inside K, be the quotient field of D. Our purpose

is twofold: to answer the question raised in the title, and to determine when a

given ideal of V is a flat D + M-module. Entering into the solution is a result

of Ferrand [6] on the descent of flatness.

It is well known (cf. [7, Theorem A(m), p. 562]) that D + M is Noetherian

(and, hence, coherent) if and only if the following hold: D = k, K is a finite

(algebraic) extension of k, and V is discrete rank one. One upshot of

considering coherence for D + M is the relaxing of the first and third of these

conditions. (See Theorem 3 and Remark 6(a) below.) To motivate the second

problem, note that the riding homological assumption used by Greenberg and

Vasconcelos [10] to study coherence for a certain family of pullbacks is, when

specialized to the D + M-construction, the condition that (k = K and) M is

D + M-flat. Inasmuch as V is coherent and M is F-flat, it is striking (see

Corollary 8) that, in case D = k, the coherence of D + M forces M to be

nonflat over D + M.

Background material on the D + M-construction and coherence may be

found in [7, Appendix 2] and [2], respectively. In addition to the notation fixed

above, it will be convenient to denote D + M by R.

2. Coherence and flatness. Before answering the question raised in the title,

we give two lemmas.

Lemma 1. Let M be a finitely generated ideal of R. Then D = k.

Proof. Since M ¥= 0, it follows from Nakayama's lemma that M ¥= M2.

Now M is cyclic as a K-module (since V is valuation), so that M/M2 is cyclic

over V/M = K. Thus M/M2 and K are isomorphic as AT-spaces and, a fortiori,

Received by the editors April 30, 1975.
AMS (MOS) subject classifications (1970). Primary 13F05, 13C10.
Key words and phrases. Coherence, descent of flatness, D + M construction, valuation ring.

1 This work was supported in part by NSF Grant GP-28409A#2.

© American Mathematical Society 1976

51



52 D. E. DOBBS AND I. J. PAPICK

as Z)-modules. However, M/M2 is finitely generated over R/M = D, so that K

is a finitely generated Z>-module. By integrality [1, Lemma 2, p. 326], D is a

field, as required.

An integral domain T, with quotient field L, is said to be finite-conductor in

case Ta n Tb is a finitely generated T-module for each a, b in L. (Finite-

conductor domains have figured recently in [11], [3], and [4].) By [2, Theorem

2.2], any coherent domain is finite-conductor.

Lemma 2. If R is finite-conductor and k ^ K, then M is a finitely generated

ideal of R and D = k.

Proof. Select b in K\k and nonzero m in M. We claim that Rm n Rbm

= Mm. Indeed, containment one way is clear, as M = Mb. Conversely, if r is

in Rm n Rbm, then

r = (dx + mx)m = (d2 + m2)bm

for some d¡ in D, m¡ in M (i = 1,2). Cancellation gives dx + mx = d2b + m2b

and so dx = d2 b. Since b is not in k, we have d2 = 0 = dx, so that r = mxm

is in A/w, thus sustaining the claim. As R is finite-conductor, Mm is a finitely

generated ideal of R. However, Mm and M are Ä-isomorphic, and an

application of Lemma 1 completes the proof.

Theorem 3. R is coherent if and only if one of the following conditions holds:

(1) k = K and D is coherent;

(2) M is a finitely generated ideal of R.
Moreover, if condition (2) holds, then D = k and K is a finite extension of k.

Proof. Assume that R is coherent. If k = K, an easy direct argument or an

appeal to [8, Theorem 5.14] shows that D is coherent. Now suppose that

k ¥= K. By Lemma 2, M is finitely generated over R.

Conversely, we see directly or by [8, Theorem 5.14] that condition (1)

implies that R is coherent. Next, assume that (2) holds. By the proof of Lemma

1, D = k and there is an integer n > 2 such that K at M/M2 at k" isomor-

phic as ^-spaces. (This yields the final assertion of the theorem.) In particular,

F is a finitely generated Ä-module.

We claim that V is finitely presented over R. Let {b¡ : 1 <;'<«} be any k-

basis of K. If R" is Ä-free on a basis {e¡: 1 < / < n), the /?-module

homomorphism g: R" —* V determined by g(e¡) = b¡ is surjective. It is

straightforward to verify that the Ä-module ker(g) is isomorphic to the direct

sum of n — 1 copies of M. By (2), ker(g) is finitely generated over R, thus

establishing the above claim.

To show that R is coherent, we use the criterion in [2, Theorem 2.1(a)]; viz.,

we show that the product of any family {A¡ : j in J} of flat Ä-modules is flat.

As each A¡ ®R V is K-flat and V is coherent, n^ ®Ä V) is K-flat. However,

since Fis finitely presented over R, the canonical homomorphism (HAA ®R V

-* H(Aj: <8>R V) is an isomorphism (cf. [1, Exercise 9(a), p. 43]), so that

(n^L,) ®Ä V is also K-flat. That 11.4, is R-fi&t, now follows from Ferrand's

descent result [6, Lemme], as applied to the inclusion R —* V, and completes

the proof.
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In view of [11, Theorem 1], the next result may be used to recover [7,

Theorem A(i), p. 561],

Corollary 4. R is integrally closed and coherent if and only if k = K and D

is integrally closed and coherent.

Proof. Combine Theorem 3 with [7, Theorem A(b), p. 560] and [8,

Theorem 5.14].

We next focus on condition (2) of Theorem 3, in order to prepare for the

examples below.

Corollary 5. Let D = k. Then R is coherent if and only if K is a finite

extension of k and M # M2.

Proof. By [9, Lemma 1.3], M ¥= M2 <=> M is a principal ideal of V. The

"only if" half is now immediate from Theorem 3. Conversely, if {b¡: 1 < /

< n) is a (finite) A>basis of K and M = Vm for some m in M, then

{b¡m: 1 < i < n) is easily seen to generate M as an Ä-module, and an

application of Theorem 3 completes the proof.

Remark 6. (a) One may ask whether k ¥= K and R coherent imply R

Noetherian. By Theorem 3 and Corollary 5 (and the result quoted in the

introduction), the answer is affirmative if and only if V has rank one.

To construct an instance where the answer is negative, let K/k be a

nontrivial finite field extension. As in [1, Example 6, p. 390], construct a

valuation ring V = K + M whose corresponding valuation v has (rank two)

value group Z X Z, with the lexicographic order. As M is the set of elements

b in the quotient field of K + M such that v(b) > 0, every element d in M2

satisfies v(d) > (0,2). Select e with v(e) = (0,1); then e is in M\M2 and, by

Corollary 5, R = k + M is the desired example.

(b) The condition "M # A/2" in Corollary 5 cannot be deleted. Indeed, let

K/k again be nontrivial finite, with V = K + M having value group R. Since

R = 2R, it is clear that M = M2, so that R = k + M is not coherent. (To

produce an example with V of rank exceeding one, traffic similarly with the

lexicographically ordered value group R X R.)
•

Theorem 7. Let I be a nonzero ideal of V. Then I is R-flat if and only if at

least one of the following conditions holds:

(\)k = K;  '
(2) I is not a principal ideal of V.

Note. If condition (1) holds, then I/MI is D-flat; by [9, Lemma 1.3],

(2) ** J - MI.
Proof. Suppose that k = K. Then, V = RM is R-ftat; moreover, / is K-flat,

since any ideal of V is. Thus, transitivity of flatness shows that / is Ä-flat,

whence I/MI s / ®R D is £>-flat.

Next, suppose that / is R-nal and k ¥= K. If (2) fails, then / ¥= MI. Now

/ ®Ä (k + M) = I is a flat ideal of k + M, so that [12, Lemma 2.1] implies

that / is a principal ideal of k + M. Then k = I/MI = K, contradicting

k ¥= K. This concludes the "only if" part of the proof.

It remains to show that condition (2) guarantees that / is .R-flat. Let a, b be

elements of /; without loss of generality, a divides b in V. By (2), / = MI, so
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that a = 2 éjdj, for some e¡ in M, d¡ in /. Without loss of generality, e = ex

divides e¡ for each i > 1, so that a and b are each in le G Re. Thus, / is the

(filtered) direct limit of its principal subideals over R, hence is flat, to complete

the proof.

Theorem 7 and Corollary 5 will be used by one of us in a subsequent paper

in order to answer a question raised in [4] about rings of global dimension 3.

Combining Theorem 3 with Theorem 7 (for the case I = M) leads immediate-

ly to our next result.

Corollary 8. R is coherent and M is R-fiat if and only if k = K and D is

coherent.

We close with a homological remark.

Remark 9. Let R be coherent, such that k # K. Then M has infinite

projective dimension over R. For a proof, D = k by Theorem 3, so that [5,

Corollary] implies that R is a going-down ring. If the result is denied, [4,

Proposition 2.5] shows R is Prüfer, and [7, Theorem A(i), p. 561] then yields

k = K, the desired contradiction.

In view of Theorem 3 and Corollary 5, the next result generalizes the

assertion in the preceding paragraph (and has a more straightforward proof).

If M ¥= M2 and k ¥= K, then M has infinite flat (weak) dimension over R. For

a proof, we may take D = k since M ®R (k + M ) = M. By Theorem 7, M is

not R-ft&t, and so the proof of [4, Proposition 4.5] may be modified to give the

desired result.
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