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THE MACKEY EXTENSION

LARRY BAGGETT

Abstract. The set of all multiplier extensions to the whole group G of a

representation of a normal subgroup TV is completely described, and neces-

sary and sufficient conditions are given for equivalence of two such exten-

sions.

I. Introduction. In his celebrated Acta paper of 1958, G. W. Mackey

describes a method for constructing irreducible unitary representations of a

group extension. Indeed, in the presence of some extra assumptions, all the

irreducible representations of such an extension are constructed via this

method. One of the integral parts of the procedure is in the extending of a

representation of one subgroup to a larger subgroup. There are, in general,

other ways of extending the representation than the one Mackey chose, and it

seems likely that some more information might be forthcoming by utilizing

these "other" extensions. It is our purpose here to describe completely the set

of all such extensions and to give necessary and sufficient conditions for two

such extensions to be equivalent. Let us establish some notation and state the

relevant Mackey results.

Suppose N is a closed normal subgroup of a separable locally compact

group G. If L is any representation of N and if x is an element of G, let x • L

be the representation of 7v* defined by (x • L)n = L,x-<nx\. Then, since L being

equivalent to L' implies that x ■ L is equivalent to x • L', the dual space Ñ of

N becomes a G-space. Actually it is convenient to think of Ñ as a G/N-space

as well. The group G/N does act on Ñ because x • Lis always equivalent to L

if x belongs to N.

Now let L he an irreducible unitary representation of N for which x • L is

equivalent to L for all x in G.

Theorem 1.1 (Mackey). There exists a multiplier representation M of G with

multiplier t such that:

(i) M extends L, i.e., the space of M is the space of L and M\N is L.

(ii) The multiplier t is the inflation to G X G of a multiplier to on G/N X G/N.

(iii) The representation M is unique in the sense that, if M' is another multiplier

representation of G which extends L and whose multiplier t' is the inflation of a

multiplier u' on G/N X G/N, then t and r' are cohomologous and M and M' are

cohomologous representations. (Two multiplier representations M and M' are

cohomologous if there exists a unitary operator v from the space of M onto the
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space of M' and a Borel function ß from G into the circle group T so that

Mx - ßix)v-xM'xvforallx.)

It is condition (iii) here which is slightly misleading. The point is that, if the

multiplier t' is not required to be an inflation, then there are often many

noncohomologous extensions of L.

The proof to Mackey's theorem has its difficulty only in the measure theory.

Intuitively we see that we must define Mx to be an operator on the space of L

so that

M-XLnMx = L(x^nx)    for all«.

Such an operator exists and is unique up to scalar operators because L is

irreducible. The difficulty then is in finding a measurable selection of these

operators.

Finally, let us state another theorem of Mackey's which indicates how the

"Little Group" gets into the picture. We shall always write 77 for the projection

of G onto G/N.

Theorem 1.2 (Mackey). Let TV, G, L, M, r andu be as in the above discussion.

If R is an irreducible representation of G whose restriction to TV is a multiple of

L, then there exists a (¡¡-representation W of G/N such that R is equivalent to

M 9(W- tt).

One wonders how other extensions of L could be combined to construct

representations of G. Perhaps the tensor product of some extension M' of L

with a /-representation would yield a unitary representation of G whose

restriction to TV is concentrated on, for example, a properly ergodic measure

class. We have not yet found such an example, but the possibilities clearly

exist. In §111 we shall apply our theorem to some special groups and

representations.

II. Multiplier extensions. Suppose AMs a closed normal subgroup of a

separable locally compact group G, and let L be an irreducible unitary

representation of TV. Assume further that for all x in G we have x ■ L is

equivalent to L. We shall compute in this section all the multiplier extensions

of L to G, and we shall give necessary and sufficient conditions for two such

extensions to be cohomologous. (See Theorem l.l(iii) for the definition of

"cohomologous representations".) Denote by M a fixed Mackey extension of

L with multiplier r, and recall that for all n in TV and x in G, we have

¥x] LnK = L{x-Inx) = ix ■ L)n.

Now let T(L) denote the set of all characters (p on TV for which <pL is

equivalent to L. If L itself is a character, then T(L) is trivial, the trivial

character only, but in general this set is not trivial. Indeed if L is induced from

a normal subgroup TV' of TV, say L = UL', then for any character <p of N/N',

we have <pL = yUL which is equivalent to Ui<p\N'L') which is UL which is

L. So in this case T(L) contains at least the entire character group of N/N'.

Always T(L) is a subgroup of the character group T(TV ) of TV, but we shall see

in the next section that it need not be closed.

Proposition 2.1. The set T(L) is a Borel subgroup of I/TV ) and it is invariant

under the action of G.
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Proof. We have already remarked that T(L) is a subgroup. If % denotes the

unitary group on the space of L, equipped with the strong operator topology,

then the product T(JV ) X % is a Polish topological group. For each element n

of N, the two mappings (<p,v) -* <jd(h)L„ and (<p,v) —> v~xLnv are continuous

from r(A^) X % into %, Hence the set of all pairs (<p, v) for which <p(n)Ln

= v~x Ln v for all n is closed, and it is obviously a subgroup of t(N ) X %. The

projection of this closed subgroup onto its first coordinate is a continuous

homomorphism of this group into a separable locally compact group. There-

fore its range, which is clearly T(L), is at least a Borel subgroup of that group.

Hence T(L) is a Borel subgroup of TiN ).

Finally, if x belongs to G, <p belongs to T(L), and v is an operator for which

<p(w)L„ = v~x Lnv for all n, then

(x • <p)(/î)L„ = <p(x~xnx)L{xx-Xnxx-]) = cp(x-xnx)MxL(x-x„x)Mx-x

= Mxv-xL(x^nx)vMxx = [MxvMxxrX Ln[MxvMxx]

for all n, which shows that (x ■ <f>)L is equivalent to L and, in fact, that

MxvM~x effects the equivalence between these two representations. In partic-

ular, r(L) is invariant which completes the proof.

Now there is, up to scalar multiples, a unique multiplier representation

<f -> i/m of r(L) satisfying

u?1 Ln u<? = <f(n)Ln   for all n.

We have seen too, in the course of the last proof, that Uf   \ is a scalar multiple

8(x, <p) of the operator Mx IL Mx '. Let us denote the multiplier associated with

t/bye.

Finally let 9(L) denote the set of all Borel functions / from G/N into T(L)

which satisfy f(hk) = /(/<)(/. • fik)). These are 1-cocycles of G/N with
coefficients in T(L) and relative to the action of G/N on T(L). The 1-

coboundaries are the functions h -» ih ■ <p)<p where qp is some element of T(L).

It is in fact the group HxiG/N,TiL)) which describes the distinct extensions

of L to G.

Theorem 2.2. For each element f of ^(L) define a mapping S^ from G into <?l

bySl- UfHx))Mx. Then:
(i) S' is a multiplier extension of L.

(ii) If M' is a multiplier extension of L, then there exists an element f of'S(L)

and a Borel function A from G into Tx such that M'x = \(x)Sl for all x. In

particular any multiplier extension of L is cohomologous to some S*'.

(iii) S' is cohomologous to Sg if and only if f = gb, where b is a coboundary.

Proof.

SIH= UMx))MxVfHy))My

= VfHx))[MxUmy))Mxx]MxMy
_

= umx))8(xJ«y)))u(x-f(^y)))<x^)Mxy

= t(x,^)5(x,/(77(>')))£(/(77(x)),(x -f(m(y)))) U{mx)){x.fHy))))Mxy

= Tfix,y)Sfxy,
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where

T-W) = rix,y)8ix,fÍTTÍy)))eifÍTTÍx)),ix ■ fHy)))).

Hence S-f is a multiplier representation. It obviously extends L since Ue is

the identity, and we have before us a formula for its multiplier tA This proves

(i).
Next let A/' be a multiplier representation of G which extends L and with

multiplier t'. Then

^r'7-«^ " ?ix,x-x)r'ix-x ,n)T'ix~xn,x)L{x-inx)

= <pxin)Mx-x L„MX,

where

(pxin) = r'ix, x~x)r'ix~x, n)r'ix~x n, x).

Consequently

MXM'~X LnMx M~x = <pxin)Ln   for all n.

It follows that <px is a character of TV, and from this last equation we see that

(px belongs to T(L). Furthermore the operator M'XM~X must be a multiple A(x)

of the operator Ui \. Since M, M' and cp are all Borel functions of x, it follows

that À must be Borel as well. We have that M'x = A(x)t// ^ Mx and (ii) will be

proved if we can show that x —» <px belongs to ?F(L). This will follow if we

verify the following two facts about this function. yxn = <px for all x in G and

n in TV, and <pxy = <pxix • i<py)) for all x and y in G. Both of these facts are

obtained, with persistence, from the cocycle identity for 2-cocycles, and from

the definition of <px in terms of the multiplier t'. Note too that we can calculate

the function / defining S* from the multiplier r*-. Thus

[/«*))](«) - 7fix,x-x)Tfix-x,n)rfix~xn,x).

Now let us prove (iii). Suppose S^is cohomologous with S8, i.e., there exists

a unitary operator v and a Borel function ß from G into Tx so that

S{= ßix)v~lSlv   for all x.

Then, computing the multipliers for these representations, we find that

rf(x,y) = T8ix,y)ßix)ßiy)ßixy).

Since both S* and Sg restrict to the ordinary representation L on TV, their

multipliers are trivial there, and ß\N must be a character of TV. We have also,

by restricting to TV, that

ßin)Ln = vLnv~x    for all«

which shows that ß\N belongs to T(L). Since we have seen how to compute/

from the multiplier r*, we calculate and find that
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fih)=gih)ih-ß\N)ß\N

which proves half of (iii).

Finally, if <p is an element of T(L) and / and g are elements of ÍF(L) which

are related as in (iii) by the coboundary h —> (/t • <p)<p, let ß be a Borel

extension of <p to all of G and consider the multiplier representation M' defined

on G by

M'x = ßix)u;xsluv.

In the first place M' is cohomologous with S* by its very definition. In the

second place M' restricts to L on N, and so by part (ii) we have that

M'x = A(x)S/ for some/' in ?F(L). Of course we can compute/' by using the

multiplier for M', and we find that/' = g. Therefore S?is cohomologous with

Sg as desired.

There is another result which has some analogy with Theorem 1.2.

Theorem 2.3. Let a be a multiplier on G X G which is identically one on

N X N. Suppose S is an extension of L and that S is a a-representation of G. If

R is any irreducible o-representation of G whose restriction to N is a multiple of

L, then there exists an irreducible unitary representation W of G/N such that R

is equivalent to S ® iW • m).

The proof to this theorem follows from the ordinary Mackey analysis but

applied to the group G" with normal subgroup N". We shall omit the easy

details.

Theorem 2.3 is important, if the non-Mackey extensions are to play a useful

role, for it again reduces the analysis to the "Little Group" except that here

the fundamental extension is more complicated to construct.

III. Examples. The question can surely be raised as to whether there are ever

any non-Mackey extensions of L. The answer to that question is in the

affirmative, but the question of whether any of these "other" extensions can

be exploited in the way that the Mackey extension has been is still unresolved.

Let N and K he separable locally compact groups, and let G he the direct

product N X K. Let L he an irreducible unitary representation of N and let

r(L) be as in §11. Then ^(L) consists of the Borel homomorphisms of K into

r(L). Furthermore, the action of K on T(L) being trivial, we see that the trivial

homomorphism of K into T(L) is the only coboundary. So if T(L) is nontrivial,

and if there exist nontrivial homomorphisms of K into T(L), then there will

exist non-Mackey extensions of L. (Of course the Mackey extension is the one

corresponding to the coboundaries.)

The simplest example of this is when N is the symmetric group S¿ and K is

the two-element group Z2. Let L he the irreducible 2-dimensional representa-

tion of N, in which case T(L) = TiN) which is isomorphic with Z2. There are

two distinct homomorphisms of K into T(L) in this instance, and so there is a

non-Mackey extension of L to the entire 12-element group. Naturally in the

case of a finite group there will be no new information deriving from this other

extension, but it does at least exist.

For a more complicated and tantalizing example, let N be the semidirect
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product CZ of the complex plane C with the group Z of integers, where an

integer k acts on a complex number À by &(A) = e'kX. Let L be the irreducible

unitary representation of TV acting in L2(F') and defined by

f^c,*)(/)K*) = e'WeX))/(e-,/£A).

What is r(L) ? We observe that L\z is a direct sum of the characters [<pm] of

Z, where ymik) = e . (The powers of X are eigenvectors for Z.) Therefore,

in order for a character <p of TV, a character of Z lifted to TV, to belong to T(L),

it is necessary that tp be one of the [<£>„,]• Conversely each tpm does belong to

7(<pm) A"

lV(9m)ifW) = A"m/(A)

r(L) for the operator Ui   \ defined on L2(F') by

effects an equivalence between tpm L and L.

r(TV) is the entire torus Tx, so that we have an example where T(L) is not

closed.

What group K to use, or more generally how to realize TV as a normal

subgroup of some group G, is not at all clear. It is TV itself whose representa-

tions are not yet completely describable, and it is possible to speculate about

how to discover new concrete representations of TV. For example, suppose one

considers G = TV X TV. Construct a non-Mackey extension S^of L, tensor with

a T-^-representation of G, and then restrict to the diagonal. What kinds of

representations of TV can be constructed in this way?

In conclusion we remark that this kind of game can be played with any

group TV. Some warnings are perhaps appropriate: There is nothing at all to

this if TV is abelian since T(L) is then always trivial and there are no non-

Mackey extensions. Unfortunately the most intriguing cases are for groups TV

which are themselves poorly understood. Finally, there are occasions when

r(L) is large, ^(L) is large, but unhappily each / in S/L) is a coboundary. An

example of this occurs in the group TV", where TV is the semidirect product

mentioned above and a is a nontrivial multiplier on TV X TV.
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