INTERPOLATION FOR ENTIRE FUNCTIONS OF EXPONENTIAL TYPE AND A RELATED TRIGONOMETRIC MOMENT PROBLEM

ROBERT M. YOUNG

ABSTRACT. A classical theorem of Hausdorff-Young shows that when $1 , the system of equations <math>\hat{\varphi}(n) = c_n \, (-\infty < n < \infty)$ admits a solution φ in $L^q(-\pi,\pi)$ whenever $\{c_n\} \in l^p$. Here, as usual, $\hat{\varphi}$ denotes the complex Fourier transform of φ and q is the conjugate exponent given by $p^{-1} + q^{-1} = 1$. The purpose of this note is to show that if a set $\{\lambda_n\}$ of real or complex numbers is "sufficiently close" to the integers, then the corresponding system $\hat{\varphi}(\lambda_n) = c_n$ is also solvable for φ whenever $\{c_n\} \in l^p$. The proof is accomplished by establishing a similar interpolation theorem for a related class of entire functions of exponential type.

1. Introduction. A classical theorem of Hausdorff-Young shows that when $1 , the system of equations <math>\hat{\varphi}(n) = c_n (-\infty < n < \infty)$ admits a solution φ in $L^q(-\pi,\pi)$ whenever $\{c_n\} \in l^p$. Here, as usual, $\hat{\varphi}$ denotes the complex Fourier transform of φ and q is the conjugate exponent given by $p^{-1} + q^{-1} = 1$. In this note we show that if a set $\{\lambda_n\}$ of real or complex numbers is "sufficiently close" to the integers, then the corresponding system

$$\hat{\varphi}(\lambda_n) = c_n \quad (-\infty < n < \infty)$$

admits a solution φ in $L^q(-\pi,\pi)$ whenever $\{c_n\} \in l^p$. Specifically, we have the following result.

THEOREM 1. Let 1 and let q be the conjugate exponent. There exists a constant <math>L > 0 with the following property: If $|\lambda_n - n| \le L$, then the system (1) admits a solution φ in $L^q(-\pi,\pi)$ whenever $\{c_n\} \in l^p$.

We prove Theorem 1 by establishing a similar interpolation theorem for a related class of entire functions of exponential type.

2. Interpolation in a related Banach space of entire functions. We denote by E_{τ}^{p} ($p \ge 1$) the Banach space of entire functions of exponential type τ for which

$$||f||_p = \left\{ \int_{-\infty}^{\infty} |f(x)|^p dx \right\}^{1/p} < \infty.$$

A sequence $\{\lambda_n\}$ of distinct real or complex numbers is said to be an interpolating sequence for E_{τ}^p if $TE_{\tau}^p \supset l^p$, where T is given by $Tf = \{f(\lambda_n)\}$. (Such sequences were studied extensively in [5] for the special cases p = 1, 2

Received by the editors April 14, 1975 and, in revised form, May 27, 1975.

AMS (MOS) subject classifications (1970). Primary 30A80; Secondary 42A80.

Key words and phrases. Interpolating sequence, entire functions of exponential type.

and the limiting case $p = \infty$. For general properties of the spaces E_{τ}^{p} see [2].) It is well known that E_{τ}^{p} is closed under differentiation and that

$$||f'||_{p} \leqslant \tau ||f||_{p}.$$

A simple application of the closed graph theorem shows that if $\{\lambda_n\}$ is an interpolating sequence, then the unit ball in l^p can be interpolated in a uniformly bounded way [5]; that is, there exists a constant M such that whenever $c \in l^p$, $||c|| \le 1$, there corresponds at least one function f in E_{τ}^p for which Tf = c and $||f|| \le M$. As a consequence [5], if the imaginary part of λ_n is uniformly bounded, then the λ_n are of necessity separated, that is $\inf |\lambda_n - \lambda_m| > 0$ $(n \ne m)$. But then, it follows that for every function f in E_{τ}^p ,

(3)
$$\left\{\sum_{n} |f(\lambda_n)|^p\right\}^{1/p} \leqslant A \|f\|_p,$$

where $A = A(p, \tau, \{\lambda_n\})$ is an absolute constant, independent of f[6]. Hence, in this case, T is in fact a bounded linear transformation *into* l^p .

If $S: E_{\tau}^p \to l^p$ is defined by $Sf = \{f(\mu_n)\}$, then we shall wish to conclude that $SE_{\tau}^p = l^p$ knowing that $TE_{\tau}^p = l^p$ and that S is "close" to T. For this purpose, we will need the following interesting result of Bade and Curtis [1].

LEMMA 1. Let X and Y be Banach spaces and T: $X \to Y$ a bounded linear transformation. Suppose that there exist constants M > 0 and $0 < \epsilon < 1$ with the following property: For each y in the unit ball of Y, there exists an x in X with $||x|| \le M$ and $||Tx - y|| \le \epsilon$. Then T is onto.

The proof of the following lemma is similar to that given in [3] for the case p = 2.

LEMMA 2. Let $\{\lambda_n\}$ be a separated sequence of points lying in a strip parallel to the real axis, and suppose that $|\mu_n - \lambda_n| \leq L$. Then for every function f belonging to E_r^p , we have the inequality

(4)
$$\left\{ \sum_{n} |f(\mu_n) - f(\lambda_n)|^p \right\}^{1/p} \leqslant A(e^{\tau L} - 1) ||f||_p,$$

where A is the same constant appearing in (3).

PROOF. Using Taylor's theorem, we write

$$f(\mu_n) - f(\lambda_n) = \sum_{k=1}^{\infty} \frac{f^{(k)}(\lambda_n)}{k!} (\mu_n - \lambda_n)^k.$$

Then, for any $\rho > 0$,

$$f(\mu_n) - f(\lambda_n) = \sum_{k=1}^{\infty} \frac{f^{(k)}(\lambda_n)}{\rho^k(k!)^{1/p}} \cdot \frac{\rho^k(\mu_n - \lambda_n)^k}{(k!)^{1/q}},$$

and hence, by Hölder's inequality,

$$|f(\mu_n) - f(\lambda_n)| \le \left\{ \sum_{k=1}^{\infty} \frac{|f^{(k)}(\lambda_n)|^p}{o^{kp}k!} \right\}^{1/p} \cdot \left\{ \sum_{k=1}^{\infty} \frac{(\rho L)^{kq}}{k!} \right\}^{1/q}.$$

Now, since $f^{(k)} \in E_{\tau}^{p}$, it follows from (2) and (3) that

$$\sum_{n} |f^{(k)}(\lambda_n)|^p \leqslant A^p \tau^{kp} ||f||_p^p.$$

Therefore, we conclude that

$$\begin{split} \left\{ \sum_{n} |f(\mu_{n}) - f(\lambda_{n})|^{p} \right\}^{1/p} & \leq A \|f\|_{p} \left\{ \sum_{k=1}^{\infty} \frac{\tau^{kp}}{\rho^{kp} k!} \right\}^{1/p} \left\{ \sum_{k=1}^{\infty} \frac{(\rho L)^{q}}{k!} \right\}^{1/q} \\ & = A \|f\|_{p} \{ e^{\tau^{p} \rho^{-p}} - 1 \}^{1/p} \{ e^{\rho^{q} L^{q}} - 1 \}^{1/q}, \end{split}$$

and the result follows by taking $\rho = \tau^{1/q} L^{-1/p}$.

The proof of Theorem 1 will follow easily from the following interpolation theorem for E_r^p .

THEOREM 2. Let $\{\lambda_n\}$ be a sequence of points lying in a strip parallel to the real axis. If $\{\lambda_n\}$ is an interpolating sequence for E_{τ}^p , then there exists a constant L > 0 such that $\{\mu_n\}$ is also an interpolating sequence for E_{τ}^p whenever $|\mu_n - \lambda_n| \leq L$.

PROOF. Since $\{\lambda_n\}$ is interpolating for E_{τ}^p , the unit ball of l^p can be interpolated in a uniformly bounded way. Thus, there exists a constant M such that whenever $\sum |c_n|^p \leqslant 1$, there exists a function f in E_{τ}^p with $f(\lambda_n) = c_n$ and $||f||_n \leqslant M$.

Let us define a mapping $T: E_{\tau}^{p} \to l^{p}$ by $Tf = \{f(\mu_{n})\}$. The inequality (4) shows that T is a bounded linear transformation into l^{p} . We show that T is in fact onto l^{p} . Let $c = \{c_{n}\}$ belong to the unit ball of l^{p} and choose f in E_{τ}^{p} such that $||f||_{p} \leq M$ and $f(\lambda_{n}) = c_{n}$. Then (4) becomes

$$||Tf - c|| \leqslant AM(e^{\tau L} - 1),$$

and since L can be chosen small enough so that the right-hand side of (5) is less than 1, the conclusion follows from Lemma 1.

COROLLARY. If $1 , then <math>\{\lambda_n\}$ is an interpolating sequence for E_{π}^p whenever $|\lambda_n - n| \le L$ and L is sufficiently small.

PROOF. In view of Theorem 2, it is enough to show that the integers are an interpolating sequence for E^p_π . Suppose that $\{c_n\} \in l^p$. By the Hausdorff-Young theorem, there exists a function φ in $L^q(-\pi,\pi)$ such that $\hat{\varphi}(n) = c_n (-\infty < n < \infty)$. Since $\{\hat{\varphi}(n)\} \in l^p$ and p > 1, it follows that $\hat{\varphi}(x) \in L^p(-\infty,\infty)$ [4]. Thus, the function $\hat{\varphi}(z)$ belongs to E^p_π and the proof is complete.

REMARK. For p=1, the integers fail to be an interpolating sequence for E_{π}^{1} for the trivial reason that the nonzero integers are already a set of uniqueness. It was shown in [5], however, that $TE_{\tau}^{1}=l^{1}$ for every $\tau>\pi$.

3. **Proof of Theorem 1.** The proof of Theorem 1 follows immediately from the above corollary since every function f belonging to E_{π}^{p} is of the form $f = \hat{\varphi}$ for some φ in $L^{q}(-\pi, \pi)$ [2].

REFERENCES

- 1. W. G. Bade and P. C. Curtis, Jr., Embedding theorems for commutative Banach algebras, Pacific J. Math. 18 (1966), 391—409. MR 34 #1878.
 - 2. R. P. Boas, Jr., Entire functions, Academic Press, New York, 1954. MR 16, 914.
- 3. R. J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc. 72 (1952), 341-366. MR 13, 839.
- 4. T. Kawata, A relation between the theories of Fourier series and Fourier transforms, Proc. Imp. Acad. Tokyo 16 (1940), 255—261. MR 2, 94.
- 5. R. M. Young, Interpolation in a classical Hilbert space of entire functions, Trans. Amer. Math. Soc. 192 (1974), 97—114.
- 6. —, An extension of the Hausdorff-Young theorem, Proc. Amer. Math. Soc. 45 (1974), 235—236.

DEPARTMENT OF MATHEMATICS, OBERLIN COLLEGE, OBERLIN, OHIO 44074