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INTERPOLATION FOR ENTIRE FUNCTIONS
OF EXPONENTIAL TYPE AND A RELATED
TRIGONOMETRIC MOMENT PROBLEM

ROBERT M. YOUNG

ABSTRACT. A classical theorem of Hausdorff-Young shows that when
1 < p < 2, the system of equations §(n) = ¢, (—o0 < n < ) admits a
solution @ in L(—m,7) whenever {c,} € I?. Here, as usual, § denotes the
complex Fourier transform of ¢ and q is the conjugate exponent given by
p~' + ¢7' = 1. The purpose of this note is to show that if a set {A,} of real
or complex numbers is “sufficiently close” to the integers, then the corre-
sponding system §(A,) = ¢, is also solvable for ¢ whenever {c,} € /”. The
proof is accomplished by establishing a similar interpolation theorem for a
related class of entire functions of exponential type.

1. Introduction. A classical theorem of Hausdorff-Young shows that when
1 < p <2, the system of equations §(n) = ¢, (—o0 < n < ) admits a
solution ¢ in LI(—w,w) whenever {c,} € /. Here, as usual, $ denotes the
complex Fourier transform of ¢ and ¢ is the conjugate exponent given by
p '+ g7! = 1. In this note we show that if a set {\,} of real or complex
numbers is “sufficiently close” to the integers, then the corresponding system

(1) (i’(}‘n) = ¢y (—°° <n< °°)

admits a solution ¢ in L?(—m, ) whenever {c,} € [/”. Specifically, we have the
following result.

THEOREM 1. Let 1 < p < 2 and let q be the conjugate exponent. There exists
a constant L > 0 with the following property: If |\, — n| < L, then the system
(1) admits a solution ¢ in L(—m,w) whenever {c,} € I?.

We prove Theorem 1 by establishing a similar interpolation theorem for a
related class of entire functions of exponential type.

2. Interpolation in a related Banach space of entire functions. We denote by
E? (p > 1) the Banach space of entire functions of exponential type 7 for
which

It = { [ 1717 dx}” < .

A sequence {A,} of distinct real or complex numbers is said to be an
interpolating sequence for EP if TEP D I, where T is given by Tf = { f(A,)}.
(Such sequences were studied extensively in [5] for the special cases p = 1, 2
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and the limiting case p = co. For general properties of the spaces E? see [2].)
It is well known that E? is closed under differentiation and that

@) £l < wllfllp-

A simple application of the closed graph theorem shows that if {A,} is an
interpolating sequence, then the unit ball in /? can be interpolated in a
uniformly bounded way [5]; that is, there exists a constant M such that
whenever ¢ € 12, ||c|| < 1, there corresponds at least one function fin E? for
which Tf = c and ||f]| < M. As a consequence [5], if the imaginary part of A,
is uniformly bounded, then the A, are of necessity separated, that is
inf|A, — A,,| > 0 (n # m). But then, it follows that for every function fin E?,

®) ey’ < ai,

where 4 = A(p,7,{A,}) is an absolute constant, independent of f[6]. Hence,
in this case, T is in fact a bounded linear transformation into /7.

If S: E? — [? is defined by Sf = { f(u,)}, then we shall wish to conclude
that SE? = [? knowing that TE? = [? and that S is “close” to T. For this
purpose, we will need the following interesting result of Bade and Curtis [1].

LEMMA 1. Let X and Y be Banach spaces and T: X — Y a bounded linear
transformation. Suppose that there exist constants M > 0 and 0 < € < 1 with
the followmg property: For each y in the unit ball of Y, there exists an x in X with
x|l < M and ||Tx — y|| < €. Then T is onto.

The proof of the following lemma is similar to that given in [3] for the case
p =2

LEMMA 2. Let {\,} be a separated sequence of points lying in a strip parallel
to the real axis, and suppose that |p, — \,| < L. Then for every function f
belonging to E¥, we have the inequality

) {Z 176 - 10 17} < At - i,

where A is the same constant appearing in (3).

Proor. Using Taylor’s theorem, we write

00w ¢, 2

) =50 = S
Then, for any p > 0,

2 fOK,) ok, — A
f(“‘n) _f(}‘n) - k§l pk(k!)l/p ) (k')l/q
and hence, by Holder’s inequality,

) - sol < { 3 Y. (3 (pmk"}‘/i

o P k!
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Now, since f*) € EP?, it follows from (2) and (3) that
S IFOMN)NP < ardk| g2
n

Therefore, we conclude that

{% ) —f()\,,)|P}l/p < 4lfl, koo kpk'}/P{ © (PL)‘I}l/q

= Allfl{ee” = 1 (et — 1,

and the result follows by taking p = V4LV,
The proof of Theorem 1 will follow easily from the following interpolation
theorem for E?.

THEOREM 2. Let {\,} be a sequence of points lying in a strip parallel to the
real axis. If {\,} is an interpolating sequence for EP, then there exists a constant
L >0 such that {p,} is also an interpolating sequence for EP whenever
|P‘n - Anl < L.

PrOOF. Since {A,} is interpolating for E?, the unit ball of /? can be
interpolated in a uniformly bounded way. Thus, there exists a constant M such
that whenever 3 |c,|” < 1, there exists a function fin E? with f(A,)) = c, and
I, < M.

Let us define a mapping T: Ef — [P by Tf = { f(p,)}. The inequality (4)
shows that T is a bounded linear transformatlon into /?. We show that T is in
fact onto IP. Let ¢ = {c,} belong to the unit ball of /” and choose fin E? such
that ||fll, < M and f(A,) = c,. Then (4) becomes

) ITf = cll < AM(e™ — 1),

and since L can be chosen small enough so that the right-hand side of (5) is
less than 1, the conclusion follows from Lemma 1.

CoROLLARY. If 1 < p < 2, then {\,} is an interpolating sequence for EF
whenever |\, — n| < L and L is sufficiently small.

ProOOF. In view of Theorem 2, it is enough to show that the integers are an
interpolating sequence for EF. Suppose that {c,} € /. By the Hausdorff-
Young theorem, there exists a function ¢ in LI(—w,7) such that ¢(n)
= ¢, (-0 < n < »). Since {$(n)} € /? and p > 1, it follows that ¢(x)
€ IF(—o0,00) [4]. Thus, the function ¢(z) belongs to EP and the proof is
complete.

RemARk. For p = 1, the integers fail to be an interpolating sequence for E}
for the trivial reason that the nonzero integers are already a set of uniqueness.
It was shown in [5], however, that TE! = [! for every r > .

3. Proof of Theorem 1. The proof of Theorem 1 follows immediately from
the above corollary since every function f belonging to E? is of the form f = ¢
for some @ in LY(—,7) [2].
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