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INTERPOLATION FOR ENTIRE FUNCTIONS
OF EXPONENTIAL TYPE AND A RELATED

TRIGONOMETRIC MOMENT PROBLEM

ROBERT M. YOUNG

Abstract. A classical theorem of Hausdorff-Young shows that when

1 < p < 2, the system of equations rp(n) = cn (-oo < n < oo) admits a

solution <p in Lq{~tt,<tt) whenever {c„} E /', Here, as usual, <p denotes the

complex Fourier transform of <p and q is the conjugate exponent given by

p~l + q~l = 1. The purpose of this note is to show that if a set {Xn} of real

or complex numbers is "sufficiently close" to the integers, then the corre-

sponding system <p(\,) = cn is also solvable for <p whenever (c„) G lp. The

proof is accomplished by establishing a similar interpolation theorem for a

related class of entire functions of exponential type.

1. Introduction. A classical theorem of Hausdorff-Young shows that when

1 < p < 2, the system of equations <p(«) = c„ (— oo < « < oo) admits a

solution <p in Lq(—m,m) whenever (c„) E lp. Here, as usual, <p denotes the

complex Fourier transform of <p and q is the conjugate exponent given by

p~x + q = 1. In this note we show that if a set {X„} of real or complex

numbers is "sufficiently close" to the integers, then the corresponding system

(1) <P(X„) = cn       (-oo < « < oo)

admits a solution <p in Lq(-m,m) whenever [cn] E lp. Specifically, we have the

following result.

Theorem 1. Let 1 < p < 2 and let q be the conjugate exponent. There exists

a constant L > 0 with the following property: If \Xn - n\ < L, then the system

(1) admits a solution <p in Lq(—m,m) whenever {cn} E lp.

We prove Theorem 1 by establishing a similar interpolation theorem for a

related class of entire functions of exponential type.

2. Interpolation in a related Banach space of entire functions. We denote by

EP (p > 1) the Banach space of entire functions of exponential type t for

which

A sequence (X„) of distinct real or complex numbers is said to be an

interpolating sequence for EP if TEP D lp, where T is given by Tf = {/(X„)}.

(Such sequences were studied extensively in [5] for the special cases p = 1, 2
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and the limiting case p = oo. For general properties of the spaces Ep see [2].)

It is well known that Ep is closed under differentiation and that

(2) II/'IL < T

A simple application of the closed graph theorem shows that if [Xn] is an

interpolating sequence, then the unit ball in lp can be interpolated in a

uniformly bounded way [5]; that is, there exists a constant M such that

whenever c G lp, \\c\\ < 1, there corresponds at least one function/in E? for

which Tf — c and ||/|| < M. As a consequence [5], if the imaginary part of X„

is uniformly bounded, then the Xn are of necessity separated, that is

inf |X„ — Am| > 0 (n ¥= m). But then, it follows that for every function /in EC,

(3) {2i/(Ajr}1/p<^ii/iL,
K n J

where A = A(p,r,{Xn)) is an absolute constant, independent of/[6]. Hence,

in this case, T is in fact a bounded linear transformation into lp.

If S: Ep -> lp is defined by Sf = {/(u„)}, then we shall wish to conclude

that SEP = lp knowing that TEP = lp and that S is "close" to T. For this

purpose, we will need the following interesting result of Bade and Curtis [1].

Lemma 1. Let X and Y be Banach spaces and T: X —» Y a bounded linear

transformation. Suppose that there exist constants M > 0 and 0 < e < 1 with

the following property: For each y in the unit ball of Y, there exists an x in X with

\\x\\ < M and \\Tx — y\\ < e. Then T is onto.

The proof of the following lemma is similar to that given in [3] for the case

p = 2.

Lemma 2. Let [Xn] be a separated sequence of points lying in a strip parallel

to the real axis, and suppose that |un — X„\ < L. Then for every function f

belonging to Ep, we have the inequality

Mp
(4) (2 l/GO -f(K)\"}     < A(eTL - 1)||/||,,

^ n '

where A is the same constant appearing in (3).

Proof. Using Taylor's theorem, we write

/W-/(*„)=  2 Ä^(u„-A„)*.
k=\       K-

Then, for any p > 0,

ft   \     M i       v  /(A:)(An)    Pk(l*n - Xn)k

/(M"W(AJ - Ä pW '       (*!)"«      '

and hence, by Holder's inequality,
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Now, since f(k) E EP, it follows from (2) and (3) that

2 \f(k)(Xn)\" < Aprkp\\f\\p.
n

Therefore, we conclude that

{2 !/(,„) -/Ml'}"' < AW,{ j, ^}'"{|, *&f

= /f||/ll,{e"'"'-i}1V1,-i},/*.

and the result follows by taking p = rx'qLTx'p.

The proof of Theorem 1 will follow easily from the following interpolation

theorem for EP.

Theorem 2. Let {X„} be a sequence of points lying in a strip parallel to the

real axis. If{Xn) is an interpolating sequence for Ep, then there exists a constant

L > 0 such  that {u„}  is also an  interpolating sequence for Ep  whenever

k -K\ < L-
Proof. Since {X„} is interpolating for Ep, the unit ball of lp can be

interpolated in a uniformly bounded way. Thus, there exists a constant M such

that whenever 2 \c„\p < i, there exists a function/in Ep with/(X„) = c„ and

WfWp < M.
Let us define a mapping T: EP -> lp by Tf = {/(u„)}. The inequality (4)

shows that T is a bounded linear transformation into lp. We show that T is in

fact onto lp. Let c = {cn} belong to the unit ball of lp and choose /in Ep such

that H/l^, < M and/(X„) = c„. Then (4) becomes

(5) \\Tf - c\\ < AM(eTL - 1),

and since L can be chosen small enough so that the right-hand side of (5) is

less than 1, the conclusion follows from Lemma 1.

Corollary. // 1 < p < 2, then [X„] is an interpolating sequence for Ep

whenever |X„ - «| < L and L is sufficiently small.

Proof. In view of Theorem 2, it is enough to show that the integers are an

interpolating sequence for Ep. Suppose that [cn] E lp. By the Hausdorff-

Young theorem, there exists a function <p in Lq(—m,m) such that <p(«)

= cn (— oo < « < oo ). Since {«p(«)} 6 lp and p > 1, it follows that <p(x)

E Lp(— co.oo) [4]. Thus, the function <p(z) belongs to Ep and the proof is

complete.

Remark. Forp = 1, the integers fail to be an interpolating sequence for E\

for the trivial reason that the nonzero integers are already a set of uniqueness.

It was shown in [5], however, that TE\ = /' for every t > m.

3. Proof of Theorem 1. The proof of Theorem 1 follows immediately from

the above corollary since every function/belonging to Ep is of the form/ = «p

for some tp in Lq(—m, m) [2].
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