PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 56, April 1976

CESARO SUMMABILITY OF THE CONJUGATE
SERIES AND THE DOUBLE HILBERT TRANSFORM

JOHN O. BASINGER!
ABSTRACT. If f(x, y), a 27 periodic function in each variable, has a modulus
of continuity w/(8) = o(1/log(1/6)) then

6,0, . f)

du dv

e p UG+ uy+0)=fx—uy+v)—flx+uy—o)+flx—uy-o)
’fn/,. 1/n 4 an(u/2)tan(v/2)

— 0 uniformly in (x, y)

where d,(x, y, f) is the first arithmetic mean of the conjugate series. This
theorem is best possible in that o(1/log(1/8)) cannot be replaced by

0(1/log(1/8)).

Given a 27 periodic function f(x, y) we shall define f (x, y), the conjugate
of f(x, y) with respect to the double Hilbert transform, to be

lim
e,n—0

du dv.

1 propalfx+uy+0)—fx—uy+0)—f(x+uy—v)+f(x—uy—r»l
;,7.[ j;, 4 tan(u /2)tan(v/2)

In [3, p. 170] K. Sokor-Sokotowski proved that if f(x, y) is 27 periodic in
each variable and belongs to the class L?, p > 1, then f(x, y) exists almost
everywhere.

In this paper we shall show that if f(x, y) is sufficiently continuous then

En(x’y»f)

_fn fn [fx+uy+0)—f(x—wy+0v)—flx+uy—ov)+flx—uy-—o) du do
1/n1/n 4 tan(u/2)tan(v/2) “

— 0 uniformly in (x, y),
where 6,(x, y, f) is the first arithmetic mean of the conjugate series.

Before we proceed we shall need the following definitions and inequalities.
Define

fl/n(x’y)

1 oo fx+uy+0) = f(x—uy+0) = fx+uy— o)+ f(x — uy — v)l
= -‘Ir—z 'I;/nfl/n 4 tan(u/2)tan(o/2) du dv
and
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- 1 (= (7 - -

6,(x,y,f) = ? f_"f_ﬂf(x + u,y + v)o6,(u)d,(v) du dv
_ L m _ _
—WZLL[f(x+u,y+v) f(x—uy +v)

—f(x + u,y — 0) + f(x — u,y — v)]6,(4)é,(v) du dv,

where
6,(u) = kél (sin(ku))(n + 1 — k)/ (n + 1)

=1 tan(u/2) — sin(n + )u/ (n + 1)(2 sin(u/2))?
= tan(u/2) — H,(u) ‘

is the first arithmetic means of the conjugate Dirichlet kernel. It is well known
that

6,(x)>0, 0<x<wm,
6,(x)| < n/2, |6,(x)| < A/x, |H,(x)] < A4/ (n+ 1)x%

THEOREM 1. Let f(x, y) be a continuous 2w periodic function with modulus of
continuity w,(8) = o(1/log(1/8)). Then

lim 5,(a,b,f) = fi/n(a,b) = 0 uniformly in (a, b).

Without loss of generality let 2 = 0 and b = 0. By definition,

e 1 - n [f(x,Y)—f(-x,.V)-f(x» —y)‘f'f(—x, —y)]
im0 =7 7, 4 tan(x/2)tan(y/2) dx dy
and
~ 1 Lt 4
5,(0,0.0) = — ["[[f(62) = f(=x0) = J(x, =) + f(= % =»)]
*0,(x)6,(y) dx dy.
Let

g(x,y) = f(x,5) = f(=x,») = f(x, =y) + f(—x, —»)

and observe that g(x, y) has a modulus of continuity w,(8) < 4w,(5) =
o(1/log(1/8)). Since g(x, 0) = 0 for all x and g(0, y) = O for all y, we have

| g(x, )| < min(o(1/log(1/x)), o(1/log(1/y))).
We can now write

5,0.0.) = i@ 0) = %5 [ ["8(x,)5(0)5(») dx

W g(x,»)

1 T k4
a? fl/,, 1/n 4 tan(x/2)tan(y /2)

dx dy.

Since
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L5 1800 018.003,05) ds a
<J [0t /10w nn/2)6,(5) dx &
< o(1/logn) [ :na,,m &= o(1)

and

j(;l/nj;l/n|g(x,y)|&'"(x)&'n(y) dx dy

< o(1/1ogn)fo'/”fo'/""T2 dx dy
= o(1/log n),

we can rewrite (1) as follows:

o)+ %5 [7 [ st) = (H,()/2 wn(x/2)
@
- (Hn (X)/2 tan(y/2)) + H,(x)H, (y)] dx dy.

Choose 0 < a < 1 and break the integral in (2) into four parts:

l/n“ 1/n 1/n® l/n"I
®) j;/n“j;/n" j;/n"]; '/; j;/n“ j; nf

The first of these is majorized by

T L 4 A A A
“) j;/n"fl/nﬂlg(x’y)l{ (n+ )yX * (n + 1)yx? * (n + 1)’x3? } b b

Setting G = max|g(x,y)| we can bound (4) with

GA[O(n"‘ logn®/(n+ 1)) + O(n*logn®/(n + 1))
+0(n*/ (n+ 1")] = o(1).

The second and third regions in (3) are majorized by

Jonhye e 5e)

= wg( ;’;)[O(na logn/ (n + 1)) + O(nlog n®/ (n + 1))

A + A + A

(n+ Dy (n+D)yxt  (n+1)’x3? b dy

+0(nn/ (n + 1)2)]
= o(1).

The fourth region is majorized by
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Jon L5l 5%)

W, ( %)[O(n logn/(n+ 1))+ O(nlogn/(n + 1))

A + A + 4
(n+ Dy (n+ Dxy?  (n+ 1)2xH?

x dy

+0(n?/ (n+1)))]
= o(1).
Therefore
Jlim §,(0,0,f) = f,,,(0,0) = 0.

In order to show this theorem is best possible, we shall construct a
continuous 27 periodic function f with modulus of continuity w,(§) =
O (1/1og(1/8)) for which lim,_, . 6,(0, 0, f) — f,/,,(O 0) # 0.

Let

n =2@ 4+ 1,
1/log(1/ (x — w/ny)), w/n, < x < 37/2n,
g (x) =1 1/log(1/ (2w /n, — x)), 37/2n, < x < 2w /n,,
0 otherwise,
and h(x) = £, 8(x). Since the support of the g, (x), k =1,..., are

disjoint, the modulus of continuity w,(8) of A(x) is equal to sup,w, (). But
each g, (x) has a modulus of continuity w, (§) = 1/log(1/8); therefore w,(8)
= 1/log(1/8). Next we define

h(y) 0<x<70< y<uyx,

h(x), 0Kx<mx<y<m,
f(xy) = ) d

0, —7< x<0,or—7< y<0,

27 periodic, otherwise.

The function f(x, y) is a continuous 2« periodic function with modulus of
continuity wy(8) = 1/log(1/8).
Since f(x,y)is 0 for —# < x <O0or —7 < y <0,

5,(0,0,) = f,»(0,0) = —ﬂ‘—z fo i fo " 1(%,$)5,(x)5,( ) dx dy

L f(x.7)
1/nJ1/n 4 tan(x/2)tan(y /2) dy dx.

Since f(x, y)6,(x)6,(y) >0 for {(x, »)|I0<x< 7, 0< y<w},
5,(0,0,f) = f,/n (0, 0)

% fﬂ [T 106 2)[8:(x)5,(9) = § cot(x/2)cot(y/2)] db dx.
m 1/nY1/n
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For 1 < a < 1 we shall break the integration into four regions.

From the proof of Theorem 1 we have that the first of these regions is
O (n**/n?). Because f(x, y) is symmetric about the line y = x, the integrals of
the second and third regions are equal. In the second region

f. /,. fl e Y)[6a(x)6,(») — 4 cot(x/2)cot(y/2)] dy dx

N L A N AT
=f1/n~f1/n h( )[ 2tan(y/2) 2 tan(x/2) +H,(x)H,(y) | dy dx.

Breaking the right-hand side of (5) into three parts we have that the first of
these is

1/n® h(y)H (x)
- j;/n“'l; 2tan(y/2) b dx

(6) T l/n" h(y)

=)y e Hn ) af " Tt &

From its definition #(0)=0 and k(y) < 1/log(1/y). Therefore (6) is majorized

by

0(n/m)o [ "1/ log(1/) &
= 0(n*/n)O(—loglog n* + log log n)
=0(1/n'"*).

The third part of (5) is majorized by

1/n®
w, (7 dx= 0(1/n'"%).
@ o zyz & dx=0(1/n'~)
The second part of (5) is

dy dx

1/ne h(y)H,(y)
f, /ns f 2 tan(x/2)

(M
=—a(0(1) + log n)fl/"ah(y)H,,()’) dy.
1/n

For n = n, — 1 where k > ky(a) sufficiently large,

0, 1/n< y<a/n,
®) h(y) =1 &(»), m/m < y <2m/m,
0, 2a/n, <y < 1/n%

Therefore (7) becomes



182 J. O. BASINGER

—a(O(l) + log n) var/nk gk(y) Sin(n + l)y
n+1 7/ ny (2 sin(y/2))2
a(0(1) + log n). fn/m 8x(37/4n)(—sin(57/4))
5

n+1 w/dn, (2 sin(y/2))?
a(O0 (1) + log n)(—sin(57/4)) f7ﬂ/4”k A &y
(n + 1) log(4n, /7) sn/an, y2
>c¢c>0.

From symmetry and (8) we have that the 4th part is

2a/n (2m/ny
( o/ f
2n/m (1/n% —Hn(y) _ Hn(x)
+ /g j;w/n,,zh(y)[ 2tan(x/2) 2tan(y/2) +H"(X)H"(y) dx &.

Since H,(x) < 0 for #/n, < x < 27 /n,, both the first integral in (9) and the
first term in the second integral are positive. Therefore (9) is greater than

20/n (1/n% — H,(x)
L o [m + Hy (x)H, ()

7'/"k

dx dy

whose modulus is majorized by
O (—loglog(2m/n,) + log log(w/n,)) + O(1/log n) = o(1).
Combining the above results gives

5,(0,0,1) = f,/,(0,0) > o(1) + ¢ forn =2% — 1.
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