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Abstract. A monotone, upper semicontinuous decomposition of a com-

pact, Hausdorff continuum is admissible if the layers (tranches) of the

irreducible subcontinua of M are contained in the elements of the decompo-

sition. It is proved that the quotient space of an admissible decomposition is

hereditarily arcwise connected and that every continuum M has a unique,

minimal admissible decomposition <£. For hereditarily unicoherent continua

& is also the unique, minimal decomposition with respect to the property of

having an arcwise connected quotient space. A second monotone, upper

semicontinuous decomposition § is constructed for hereditarily unicoherent

continua that is the unique minimal decomposition with respect to having a

semiaposyndetic quotient space. Then & refines § and S refines the unique,

minimal decomposition £ of FitzGerald and Swingle with respect to the

property of having a locally connected quotient space (for hereditarily

unicoherent continua).

For a compact, Hausdorff continuum M, FitzGerald and Swingle [4, p. 37]

have obtained a unique monotone, upper semicontinuous decomposition £

whose quotient space (M, £) is semilocally connected and which is minimal

with respect to these properties. A second description of this decomposition

using collections of closed subsets which separate M is given by them in [4, p.

49] and by McAuley in [9, p. 2]. For a compact, metric continuum M,

Charatonik has defined a decomposition to be admissible if it is monotone,

upper semicontinuous and the layers of the irreducible subcontinua of M are

contained in the elements of the decomposition [2, pp. 115-116]. He then

proves in the same paper that the quotient space of an admissible decomposi-

tion of a continuum M is hereditarily arcwise connected and that every

continuum has a unique, minimal admissible decomposition &. One purpose

of this paper is to extend Charatonik's results to compact, Hausdorff continua.

A second purpose pertains to the class of hereditarily unicoherent, Haus-

dorff continua. It is easily seen with simple examples that in general the two

decompositions mentioned above are not comparable, i.e., neither refines the

other. However, if the continuum M is hereditarily unicoherent then & refines

£ (61 g £) since the semilocally connected quotient space (M, £) must then be

arcwise connected. In this paper a third decomposition S is constructed which

is the unique minimal decomposition with respect to being monotone, upper

semicontinuous and having a semiaposyndetic quotient space. The construc-

tion involves a collection of closed subsets of M that separate M and satisfies
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a condition used in [4, p. 49]. It will then be the case that & á § Si £ where

none of these refinements can be reversed.

In a compact, Hausdorff continuum an arc (sometimes called a generalized

arc) is a subcontinuum with exactly two nonseparating points. If M is an

irreducible continuum Gordh has proved [6, pp. 648-649] that M has a unique

minimal monotone, upper semicontinuous decomposition 3D such that the

quotient space is either degenerate or an arc. The elements of this unique

decomposition are called layers and if q denotes the quotient map of M onto

(A/.öD), the layers are the sets of the form q~xix) where x G (M,6D). If Fis a

set function then F is expansive if whenever A G M then A G FÍA) and if

A G B G M, then F (A) G F(5). If A G M then A is F-closed if A = FiA).
In order to generalize Charatonik's decomposition theorems to the Hausdorff

setting we begin by defining the set function P in the compact, Hausdorff

continuum M.li A G M then PÍA) is the union of all the layers of irreducible

subcontinua of M that intersect A.

Theorem I. If M is a compact, Hausdorff continuum then M admits a unique

minimal admissible decomposition &.

Proof. If A, B C M it is clear that A G PÍA) and if A G B then PÍA)
G PÍB). Therefore P is expansive. By [4, p. 37, Theorem 2.5] M has a unique

minimal decomposition â with respect to the properties of being upper

semicontinuous and having P-closed elements. Let t$! he the upper semicontin-

uous decomposition whose elements are the components of the elements of &.

If A G & and CA is a component of A then PiCA ) G PÍA) = A since A is P-

closed. But PiCA) is clearly connected so PiCA) = CA since CA is a

component of A. Thus the elements of &' are P-closed and because & refines

every decomposition with this property we must have &' = &. Therefore & is

monotone. If A G & and L is a layer of an irreducible subcontinuum of M that

intersects A, it follows from the definition of P that L G A since A is P-closed.

Hence & is an admissible decomposition. Now if ß is any other admissible

decomposition then clearly the elements of ß must be P-closed and so & á ß

since & refines every upper semicontinuous decomposition into P-closed

elements. Therefore & is the decomposition as claimed in the theorem.

If A, B, C C M then A cuts B from C if every subcontinuum of M that

intersects both B and C also intersects A.

Theorem 2 (Bing). Let M be a compact, Hausdorff continuum irreducible

between points a and b. If no point x in M cuts any other point y from {a, b) then

M is an arc.

Proof. The proof given by Bing [1, Theorem 6] for compact, metric

continua generalizes immediately to the Hausdorff setting.

Theorem 3. Let M be a compact, Hausdorff continuum and let ß be an

admissible decomposition. Then the quotient space (A/, ß) is hereditarily arcwise

connected.

Proof. To show (Af,/?) is hereditarily arcwise connected, it is clear that it

suffices to show that every nondegenerate, irreducible subcontinuum of iM,ß)

is an arc. Let N he an irreducible subcontinuum of iM,ß) between a and b,



MONOTONE DECOMPOSITIONS OF HAUSDORFF CONTINUA 373

a # b. Take x, y G N, x ¥= y, and let us show that x does not cut y from

[a, b). Then by Theorem 2, N will be an arc. Let/be the quotient map of M

onto (M,ß) and consider the continuum /~ (TV). Let T be an irreducible

subcontinuum of/"'(TV) fromf~x(y) to f~x(b). If /"'(x) D T = 0 then x

£ /(T), ¡)j£ /(T7) and x does not cut y from {a, ¿V} (we are assuming here

that neither x nor y is a or b; if x or^ is one of the points a or b the argument

will be clear from what follows). Assume f~x(x) (1 T ^ 0. Because ß is

admissible the layers of T lie in the elements of (/_1(i)|i G (M,ß)}. Also T

is irreducible from f~x(y) to/_'(¿>) and it follows that Thas a subcontinuum

T such that T n /_1(x) # 0 # T n /~'(¿>) and F n /"'(>>) = 0- Let S
be an irreducible subcontinuum of f~xiN) from /~'(a) to /_'(x). If S

n f~X(y) = 0 then/(S) U /(7") is a subcontinuum of TV containing a and

6 but not_>> contradicting the irreducibility of N. So S n /~'(.y) ^ 0 and by

the same reasoning as above there exists a subcontinuum S' of 5 such that

S' n /"'GO # 0 9* 5' n f~l(a) while 5' n f~l(x) = 0 Then a,>>
G fiS') but x g fiS') and x does not cut y from {a, 6} thus completing the

proof.

Corollary. If M is a compact, Hausdorff continuum and & is the unique

minimal admissible decomposition of M, then (A/, &) is hereditarily arcwise

connected.

The structure of the elements of the unique minimal admissible decomposi-

tion (M,&) of M is described in [4, §§4 and 7] by replacing the set function N

by the set function P used here.

A continuum M is hereditarily unicoherent if the intersection of any two

intersecting subcontinua is connected. The following two notions of aposyn-

desis and semilocal connectedness are equivalent for compact, Hausdorff

continua [7, pp. 546-547]. We say M is semilocally connected if given x G M

and an open set U containing x, there exists an open set V such that

x G V G U and M — V consists of a finite number of components. The

continuum M is aposyndetic if given distinct points x, y of M there exist open

sets Ux, Uy and continua 77,., 77 such that x G Ux G Hx G M — {y) and y

G Uy G Hy G M — {x}. If one of these sequences of inclusions (but not

necessarily both) can always be obtained for distinct points x, y G M, then M

is semiaposyndetic. If 73 C M let 7/77) = B U [z G M\ there does not exist

an open set U and continuum 77 such that zGUGHGM— B) and A/T?)

= B U [z G M\ there does not exist an open set U and continuum 77 such

that BGUGHGM- {z}}. These two set functions T and K are due to F.

B. Jones [8, pp. 404—405]. Now let Z be the set function defined by

Z(5) = KiB) n TiB) where B G M. We turn our attention now to heredi-

tarily unicoherent continua and use Z to describe a decomposition § that "fits"

between & and £.

Theorem 4. Let M be a compact Hausdorff continuum. There exists a unique

minimal upper semicontinuous decomposition § of M into Z-closed elements.

Proof. Clearly for all subsets A, B of M, A G Z(A) and if A

G B then Z(^l) C Z(73). So the set function Z is expansive and the required

decomposition exists by [4, Theorem 2.5].
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Lemma 1. Let the compact, Hausdorff continuum M be hereditarily unicoher-

ent and let A G M. If A is connected then ZÍA) is a continuum.

Proof. It is known that TÍA) is a continuum [4, p. 35]. In general KÍA) is

not connected but because M is hereditarily unicoherent it follows easily that

KÍA) is a continuum. Thus Z(^4) = TÍA) D KÍA) is a continuum.

Theorem 5. Let M be a hereditarily unicoherent compact Hausdorff continuum

and let g denote the decomposition of Theorem 4. Then (i) g is upper semicontin-

uous, (ii) g is monotone, (iii) (M, g) is semiaposyndetic, and (iv) g refines every

decomposition satisfying (i), (ii), and (iii).

Proof. Let %' he the upper semicontinuous decomposition of M whose

elements are components of members of g. Using Lemma 1 and the argument

given in Theorem 1 the elements of g' are Z-closed. Since g refines every such

decomposition it must be that g = g' and g is thus monotone. Now let

x, y G (A/, §), x t¿ y. Then /_1(x) and/~'(y) are connected and Z-closed

where / is the quotient map of M onto (A/, g). Because M is hereditarily

unicoherent either A:(/_1(x)) n f~xiy) = 0 or T(/_,(x)) n f~l(y) = 0.

Otherwise

(*(/-»(*)) ufw) n (nr1w)u/-|w) = rlwu/-1w
which is not connected. If À'(/~'(x)) n /_1(y) = 0 then because M is

hereditarily unicoherent and/_1(v) is compact, there exists an open set W

and continuum H such that f~l(x) G W G H and H n /"'(v) = 0 If

F(/~'(x)) n /_1(v) = 0, by the compactness of/-1 (y) there exists IF and

// as before such that/~'(y) G W G H and // f*l /"*(*} = 0- Because g is

upper semicontinuous it follows that either x G/(//) C/(//) C (A/, g)

- { y} or>> G /(//)° C /(//) C (A/,g) - {x}. Hence (A/,g) is semiaposyndet-

ic.

Finally let §' he any monotone decomposition of M such that (A/, §') is

semiaposyndetic and we will show that g £= f. From the semiaposyndesis of

(A/, g') it follows that (A/, g') is a Hausdorff space and this implies that g' is

upper semicontinuous. Take G G g', x G M — G and let a = /(G ), 6 = /(x)

where /is the quotient map of M onto (A/, g')- Because (A/, S') is semiaposyn-

detic we can assume that there exist an open set W and continuum H of

(A/,g') such that a G W G H G (M,S') - {£}• Then G C/-1(W)

C /"'(//) C M - {x}. Hence x G KÍG) and thus x g ZÍG) which shows

that the elements of g' are Z-closed. Since §' is upper semicontinuous with Z-

closed elements and g is the unique minimal such decomposition, it must be

that g S g'.

Now let us describe the unique minimal decomposition of Theorem 4 by an

internal construction. Let K he a collection of closed subsets of M each of

which separates M (called closed separators) with the following property:

lï k G K and M - k = Ax U A2, a separation, then if

(*)        ax G Ax, a2 G A2, b G k, there exist k' G AT and for either

/ = 1,/ = 2 or/ = 1, / = 2 an open set W and continuum H

such that a¡ G W G H and k' separates Oj from // U {b).
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Let K be the union of all the collections of closed separators satisfying (*).

Then K is itself a collection of closed separators satisfying (*) and is clearly

the unique maximal such collection. Given x G M denote by Sx the set of all

points y of M such that there does not exist k G K which separates x from y.

By [4, Lemma 8.1] S = {Sx\x G M) is an upper semicontinuous decomposi-

tion of M.

Theorem 6. If% is the unique minimal decomposition of Theorem 4 with respect

to being upper semicontinuous with Z-closed elements for the compact, Hausdorff,

hereditarily unicoherent continuum M, then § = §.

Proof. Let/be the quotient map of M onto (M,§) and let K = {/~'(ä:)|A:

is a closed separator of (M,§)}. Now K is a collection of closed separators of

M. Suppose M - f~xik) — A U B, a separation, and a G A, b G B, c

G f~x(k). Because / is monotone k separates /(a) from/(6) in (A7, S) and

because (A/, S) is semiaposyndetic there exist an open set If and continuum 7/

of (M,§) such that/(a) G W G 77 C (M,§) - [f(b)}. Let k' be a closed set

that separates/(¿b) from 77 U {/(c)}. Then/~'(/c') separates b from/-1 (77)

U [c] in M. Hence K has property (*). This implies that S á § for suppose

that Sx G S and G n Sx ^ 0 # G' D Sx where G, G' G § and G ¥= G'.

Let k be a closed subset of (M, §) that separates/(G ) from/(C). It follows

that fx(k) separates G from G' so f~x(k) separates two points of Sx. This

contradicts the definition of Sx since/-1 (k) belongs to K and therefore to K.

Denote by Sc the set of all components of members of S. Clearly Sc g §

2= S and the proof will be complete by showing that § S Sc, which implies

that S = 8. To prove this we will show that %c is upper semicontinuous with

Z-closed elements. Because § is minimal with respect to these properties it will

then follow that Q á Sc. Clearly Sc is upper semicontinuous since S is. Take

SGS, x G M — S and let Cs be a component of 5. By the definition of K,

for every y G Cs there exist k' G K and a continuum 77 such that either (1)

y G 77° C 77 C M - [x] and k' separates 77 from x or (2) x G 77° C 77

C M - {y) and k' separates 77 from y. Suppose for some y G Cs that (2) is

true. Then 77 n Cs = 0 for otherwise k' would separate two points of S. Thus

x G T(CS) so x G Z(Cj). Now assume that for every y G Cs that (1) is true.

By compactness there exist an open set W and continuum Q such that

Cs G W G Q G M — {x}. Therefore x G K(CS) and so in this case also

x G Z(CS). Hence Z(CS) G S and since Z(CS) is connected by Lemma 1 and

Cs is a component of S, Z(CS) = Cs. This completes the proof.

Theorem 1. If M is a hereditarily unicoherent compact Hausdorff continuum,

then & S 8 S £.

Proof. For a hereditarily unicoherent continuum A7, Charatonik has shown

[3, Theorem 5] that if M has a monotone, upper semicontinuous decomposi-

tion with an arcwise connected quotient space then the decomposition is

admissible. His proof, although given for metric continua, extends easily to the

Hausdorff setting. Thus for hereditarily unicoherent continua the unique

minimal admissible decomposition & of Theorem 1 can alternately be de-

scribed as the unique, minimal monotone, upper semicontinuous decomposi-

tion whose quotient space is hereditarily arcwise connected. In Theorem 5 the
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decomposition g is shown to be unique and minimal with respect to the

properties of being monotone, upper semicontinuous and having a semiapo-

syndetic quotient space. But Gordh [5, Theorem 2.3] has proved that a

semiaposyndetic, hereditarily unicoherent continuum is arcwise connected. So

it follows from this that & ^ §. Now recall from the introduction that £ is the

unique, minimal, upper semicontinuous decomposition of a continuum such

that the quotient space is semilocally connected. But a hereditarily unicoher-

ent, semilocally connected continuum is locally connected, so for hereditarily

unicoherent continua, £ can be described as unique and minimal with respect

to the properties of being monotone, upper semicontinuous and having a

locally connected quotient space. Hence & ë g á £.

It is easily seen with simple examples that these refinements cannot be

reversed. Also by forming a continuum that includes a sin(l/x) curve and its

limit bar, a simple fan, the union of two simple fans in "opposite" directions

with a common limit interval, it is instructive to see how the successive

application of these three decompositions to this continuum continually

"improves" the quotient space.
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