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SOME REMARKS ON SUMMABILITY FACTORS1

LLOYD A. GAVIN

Abstract. Bosanquet [2] showed that a necessary and sufficient condition

for 2*°= i xk.yk t0 «>e Cesàro summable of order n (n is a nonnegative integer)

whenever ak(y) = 0(k) where ak(y) is the k th Cesàro mean of y of order n

is that 2f-i kn+l\An+1xk\ < oo and lim* ̂ /ex* = 0. The main result of

this paper is to show that a necessary and sufficient condition for 2*°=i ^tA

to be Cesàro summable of order n (n is a nonnegative integer) whenever

2"_i fc"+,|A"+1^| < oo and \imk_xkxk = 0 is that a"k{y) = 0(k).

Introduction. Let the linear space of all complex sequences be denoted by co.

Any linear subspace of to is called a sequence space. A sequence space which

is a Banach space such that for k = 1,2,... the linear functionals fk, where

fk(x) = xk are continuous, is called a BK-space. Let m be a nonnegative

integer, and E a Banach space containing en = {S„k}kxLx, «=1,2,_If

each x G E has the property that

n 1        (m + n - k\

im + n\ \        m        J  k k

\    "    )

«CM =   2  -,-;—r\ )xkek G £   for   n = 1, 2, ...
" k=\ (m + n\ \        m        )  K *

and x = \imn_00anr'(x), then E is called a BK-space with (C,m) - AK. It is

well known that (C,m) — AK implies (C,m + k) — AK for k = 0, 1, 2, ...

and w = 0, 1, 2, ....

Let £ and Fbe sequence spaces. (E -» F) = {x G co: xy = {jc^>^}"=i G F

for all .y G 7f } is called the space of multipliers from E into F. Associated with

each sequence space E are the integrated and differentiated spaces of E

defined respectively by

jE = {x G w.dx = {kxk}k»=x GE),

,r _ f I xk \ ,-zrl

The following sequence spaces will be considered.

_
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/°° = {x G w: sup¿|x/,| < oo},

l = {x E (o:2?=i 1**1 < oo),
c0 = {x G co: lim*_»wx¿ = 0),

6tr0 = (x G co: 2*°=i l-^A- - *fc+11 < oo and lim^^x* = 0),

i/o = {x G w: 2f=i (* + l)|A2xJ < co and lim^^x* = 0},
a» = {* G «: supj/c '2Î-i xj < oo}.

For x G co, set

s°(x) = x, + x2 + ••• + x„,

sxn(x) = sHx) + s°2(x) + ---+s°n(x),

sk(x) = sk~x(x) + 4"'(x) + • • ■ + sk„-x(x); k, n = 1, 2, 3, ....

Set ak(x) = sk(x)/(n+kk), k = 0, 1, 2, ... and « = 1, 2, .... c£(» is

called the «th Cesàro mean of x of order k. Ii lim^^o-^fx) = s, we say

2^°=i -*„ is (C, A:) summable and denote this by (C,k) - 2^=i *« = J-

For k = 0, 1, 2, • • • define

C¿ = {x G co: lim„^00a*(x) exists),

'Ck = {x G co: sup„|a*(x)| < oo), and

"¿.oo = {jc G to: sup„|n_1o*W| < oo).

/i|+1 = (x G co: 2"=i nfc+1|A* + 1x„| < oo}and^ + 1 = hkb + x D Jc0where

A'x   = x„ - xn+x and Ak+Xxn = A'(A*x,,), Ac = 1, 2, 3, ...,

vk + x = {x G co: 2„°°=i (» + OV+1x„| < oo}, and
vq+x = i^+1 n c0.

Let 7s be a sequence space and n a nonnegative integer. The set of all y E co

such that (C,n) - 2/tLi ^/tJ^ exists for all x G £ is called the set of

summability factors of E of order n. Clearly the set of summability factors of

E of order n is the set of multipliers (E —> C„). Using the multiplier notation,

Bosanquet [2, p. 296, Theorem A] showed that (anoo —> C„) = h"+x for

n = 0, 1, 2, .... Our main result stated in multiplier notation is (h"+x —* Cn)

= an x for n = 0, 1, 2, .... (See Theorem 2.12.)

1. Preliminary statements.

1.1 Proposition. For m = 1,2,...,    hm+l G W.

Proof. Let m be a positive integer and let x G /!m+1. Then

2/tLi km+x\Am+xxk\ < oo and lim^x* = 0. Set ek = Amxk; then Aek

= Am+1x,. Hence 2?-i ¿m+1|AeJ = 2f=i **H |Am+1x,| < oo. By [1, p.

42, Lemma 6] there exists a number j such that
(i)ek = s + o(l/km+x) and

(n)2k~lkm\ek-s\ < oo.
Since hm C c0,

(1.2) lim e¿ =   lim Amx¿ = 0.
v       ' ¿->oo    K k->oo K

By (1.2) and (i), s = 0. By (ii) 2"-, km\Amxk\ < oo. Hence x G hm.
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Remark. By [5, p. 96, Theorem 3.2], hx G I. Hence hm G I for m = 1, 2, 3,

. . .   .  (See 1.1.)

The following results will be used:

1.3. If E and F are BK-spaces with (C,k) - AK, then (E n F -> Ck)

= (E -* Ck) + (F -* Ck) [4, p. 156, Theorem 4].
1.4. If   r > -\,p > 0, 2Jt°=I kp-x\xk\ < oo,   then   2f=i */H"lA''+1jc/t|

< oo if and only if 2"=i kp+r+x\Ar+x(xk/k)\ < oo [3, p. 77].

If p = 0 in 1.4, we get for r = 1, 2, ...,    <ff n c7/¡£+1 = ¿/ n vr+x. Hence

for r = 1, 2, ...,    / n hrb+x = I n / i/r+1. Since /r^1 C / for r = 0, 1, 2,

(1.5) Ar+1 =/i/0+1 n /.

2. The space of multipliers from h" into C„_x.

2.1 Lemma. /°° C an_Xtx,    n = 1, 2,_

Proof. The proof is by induction. Since a0oo = o^ the statement is true for

n = 1. Assume

(2.2)

(2.3)

r C ak        for 1 < k < n,

s"r(x)

rn+\

1     r

r 7=1

f'W

If x G /°°, then by (2.2) s\ioj\s]-x(x)/jn\ < /W < oo. Hence (2.3) implies

supr|ifn(x)//-fl+1| < M. Thus/00 C o„i00.

2.4 Lemma. For k = 0, \,2, ..., n = \, 2, ... and x t to,

4(^) = «4(x)-(^ + i)5t+11M.

Proof. Follows immediately from Abel's partial summation and definition

of^M-

2.5 Proposition. For k = 0, \,2, ...,   d'Ck C akoo.

Proof. It suffices to show that 'Ck c f akoo for k — 0, 1, 2,,....  Let

x G' C^., then

I/Ml
(2.6) sup

n

= M < oo.

Since 'Q. C 'Ck + X for Â: = 0, 1, 2, ...,

|4+1M
(2.7) sup „<t + i

= M' < oo

for some M' > 0, From 2.4 we obtain

(2.8) s*(<&) = ns* (jc) - (Â: + 1)4*{M    for « = 1, 2, ..

Now (2.6), (2.7) and (2.8) imply
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Skn(dx)
<

skn(x)
+ (k +1) £T|'(*)

Jfc+1 < M + (A: + 1)A/'

for all n. Hence dx E akao, i.e., x E S àkaB .

2.9 Theorem. For n = 0, 1, 2, ...,   a„M = ((an C„) -» C„).
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Proof. Evidently anoo £ ((anoo -» C„) ** C„) for all n. Bosanquet proved

that Onoo -* C„) = h"+x for n = 0, 1, 2, ... [2, p. 296, Theorem A]. For
a = 0, 1, 2, ..., hn+x = S ̂ o+1 D /, « = 0, 1, 2, .... By [4, p. 155, Theorem

3], /' vq+x is a BK-space with (C,n) - AK. Since / is a BK-space with AK, it

also has (C,n) — AK. From [4, p. 165, Theorem 4]

(Koo ̂  c„) ̂  c„) = ( jV n /->c„)

= (/i-3+1^C,,) + (7^Cj   for   « = 0,1,2,....

If ^o+1 -* c«) - d'C„,n = 0, 1, 2, ...[4, p. 156, Theorem 5]. Since/has/I AT,
(/ _» c„) = (/ -» C0) = /". Thus, by 2.1 and 2.5,

(2.10) ((o„i00 -*C,)-»g- ¿'C„ + /* C a„)00.

Hence ((anx -* C„) -» C„) = ano0 for « = 0, 1, 2.

2.11 Corollary. For « = 0, 1, 2,_    a„i00 = d'C„ + /°°.

Proof. See (2.10) in proof of 2.9.

Our main result can now be stated and proved.

2.12 Theorem. For n = 1,2,

Proof. By 2.9 ana0 = ((anx -

h" = k-,,00 -

[2, p. 296, Theorem A]. Hence

(A"-* C„_,) = ((<*_,,«,

.,(*"-* C„_,)  —  0-„_i,oo.

C„)^C„) for« = 0, 1,2,

C„_,)   for« = 1, 2, ...

C„_,) -* C„_,)    for « = 1,2,-

2.13 Corollary. For n = 1, 2, ..., ((«" -> C„_,) -* C„_,) = «".

Proof. Let n be a positive integer. (hn —> C„_|) = an_x x by 2.12.

k-Loo -> C„_i) - A"

by [2, p. 296, Theorem A].
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