SOME REMARKS ON SUMMABILITY FACTORS¹

LLOYD A. GAVIN

ABSTRACT. Bosanquet [2] showed that a necessary and sufficient condition for $\sum_{k=1}^{\infty} x_k y_k$ to be Cesàro summable of order n (n is a nonnegative integer) whenever $\sigma_k^n(y) = O(k)$ where $\sigma_k^n(y)$ is the k th Cesàro mean of y of order n is that $\sum_{k=1}^{\infty} k^{n+1} |\Delta^{n+1} x_k| < \infty$ and $\lim_{k \to 0} k x_k = 0$. The main result of this paper is to show that a necessary and sufficient condition for $\sum_{k=1}^{\infty} x_k y_k$ to be Cesàro summable of order n (n is a nonnegative integer) whenever $\sum_{k=1}^{\infty} k^{n+1} |\Delta^{n+1} x_k| < \infty$ and $\lim_{k \to \infty} k x_k = 0$ is that $\sigma_k^n(y) = O(k)$.

Introduction. Let the linear space of all complex sequences be denoted by ω . Any linear subspace of ω is called a sequence space. A sequence space which is a Banach space such that for $k = 1, 2, \ldots$ the linear functionals f_k , where $f_k(x) = x_k$ are continuous, is called a BK-space. Let m be a nonnegative integer, and E a Banach space containing $e_n = \{\delta_{nk}\}_{k=1}^{\infty}, n = 1, 2, \ldots$ If each $x \in E$ has the property that

$$\sigma_n^m(x) = \sum_{k=1}^n \frac{1}{\binom{m+n}{n}} \binom{m+n-k}{m} x_k e_k \in E \quad \text{for} \quad n = 1, 2, \dots$$

and $x = \lim_{n \to \infty} \sigma_n^m(x)$, then E is called a BK-space with (C, m) - AK. It is well known that (C, m) - AK implies (C, m + k) - AK for $k = 0, 1, 2, \ldots$ and $m = 0, 1, 2, \ldots$

Let E and F be sequence spaces. $(E \to F) = \{x \in \omega : xy = \{x_k y_k\}_{k=1}^{\infty} \in F \text{ for all } y \in E\}$ is called the space of multipliers from E into F. Associated with each sequence space E are the integrated and differentiated spaces of E defined respectively by

$$\int E = \{x \in \omega : dx = \{kx_k\}_{k=1}^{\infty} \in E\},\$$

$$dE = \left\{x \in \omega : \int x = \left\{\frac{x_k}{k}\right\}_{k=1}^{\infty} \in E\right\}.$$

The following sequence spaces will be considered.

Received by the editors October 8, 1974.

AMS (MOS) subject classifications (1970). Primary 40D15.

Key words and phrases. Summability factors.

¹This work is partially excerpted from the author's Ph.D. thesis written at Illinois Institute of Technology under Professor Gunther Goes.

[©] American Mathematical Society 1976

$$\begin{split} l^{\infty} &= \{x \in \omega : \sup_{k} |x_{k}| < \infty\}, \\ l &= \{x \in \omega : \sum_{k=1}^{\infty} |x_{k}| < \infty\}, \\ c_{0} &= \{x \in \omega : \lim_{k \to \infty} x_{k} = 0\}, \\ bv_{0} &= \{x \in \omega : \sum_{k=1}^{\infty} |x_{k} - x_{k+1}| < \infty \text{ and } \lim_{k \to \infty} x_{k} = 0\}, \\ q_{0} &= \{x \in \omega : \sum_{k=1}^{\infty} (k+1) |\Delta^{2} x_{k}| < \infty \text{ and } \lim_{k \to \infty} x_{k} = 0\}, \\ \sigma_{\infty} &= \{x \in \omega : \sup_{k} |k^{-1} \sum_{n=1}^{k} x_{n}| < \infty\}. \end{split}$$

For $x \in \omega$, set

$$s_n^0(x) = x_1 + x_2 + \dots + x_n,$$

$$s_n^1(x) = s_1^0(x) + s_2^0(x) + \dots + s_n^0(x),$$

$$\vdots$$

$$s_n^k(x) = s_1^{k-1}(x) + s_2^{k-1}(x) + \dots + s_n^{k-1}(x); k, n = 1, 2, 3, \dots.$$

Set $\sigma_n^k(x) = s_n^k(x)/\binom{n+k}{k}$, $k = 0, 1, 2, \ldots$ and $n = 1, 2, \ldots, \sigma_n^k(x)$ is called the *n*th Cesàro mean of *x* of order *k*. If $\lim_{n \to \infty} \sigma_n^k(x) = s$, we say $\sum_{n=1}^{\infty} x_n$ is (C, k) summable and denote this by $(C, k) - \sum_{n=1}^{\infty} x_n = s$.

For
$$k = 0, 1, 2, \cdots$$
 define $C_k = \{x \in \omega: \lim_{n \to \infty} \sigma_n^k(x) \text{ exists}\},$ $C_k = \{x \in \omega: \sup_n |\sigma_n^k(x)| < \infty\}, \text{ and }$ $\sigma_{k,\infty} = \{x \in \omega: \sup_n |\sigma_n^k(x)| < \infty\}, \text{ and }$ $\sigma_{k,\infty} = \{x \in \omega: \sup_n |n^{-1}\sigma_n^k(x)| < \infty\}.$ $h_b^{k+1} = \{x \in \omega: \sum_{n=1}^{\infty} n^{k+1} |\Delta^{k+1}x_n| < \infty\} \text{ and } h^{k+1} = h_b^{k+1} \cap \int c_0 \text{ where }$ $\Delta^1 x_n = x_n - x_{n+1} \text{ and } \Delta^{k+1} x_n = \Delta^1(\Delta^k x_n), k = 1, 2, 3, \ldots,$ $v_b^{k+1} = \{x \in \omega: \sum_{n=1}^{\infty} (n+1)^k |\Delta^{k+1}x_n| < \infty\}, \text{ and }$ $v_0^{k+1} = v_b^{k+1} \cap c_0.$

Let E be a sequence space and n a nonnegative integer. The set of all $y \in \omega$ such that $(C, n) - \sum_{k=1}^{\infty} x_k y_k$ exists for all $x \in E$ is called the set of summability factors of E of order n. Clearly the set of summability factors of E of order n is the set of multipliers $(E \to C_n)$. Using the multiplier notation, Bosanquet [2, p. 296, Theorem A] showed that $(\sigma_{n,\infty} \to C_n) = h^{n+1}$ for $n = 0, 1, 2, \ldots$. Our main result stated in multiplier notation is $(h^{n+1} \to C_n) = \sigma_{n,\infty}$ for $n = 0, 1, 2, \ldots$ (See Theorem 2.12.)

1. Preliminary statements.

1.1 Proposition. For $m = 1, 2, \ldots, h^{m+1} \subset h^m$.

PROOF. Let m be a positive integer and let $x \in h^{m+1}$. Then $\sum_{k=1}^{\infty} k^{m+1} |\Delta^{m+1} x_k| < \infty$ and $\lim_{k \to \infty} x_k = 0$. Set $\varepsilon_k = \Delta^m x_k$; then $\Delta \varepsilon_k = \Delta^{m+1} x_k$. Hence $\sum_{k=1}^{\infty} k^{m+1} |\Delta \varepsilon_k| = \sum_{k=1}^{\infty} k^{m+1} |\Delta^{m+1} x_k| < \infty$. By [1, p. 42, Lemma 6] there exists a number s such that

(i)
$$\varepsilon_k = s + o(1/k^{m+1})$$
 and
(ii) $\sum_{k=1}^{\infty} k^m |\varepsilon_k - s| < \infty$.
Since $h^m \subset c_0$,

$$\lim_{k \to \infty} \varepsilon_k = \lim_{k \to \infty} \Delta^m x_k = 0.$$

By (1.2) and (i), s = 0. By (ii) $\sum_{k=1}^{\infty} k^m |\Delta^m x_k| < \infty$. Hence $x \in h^m$.

REMARK. By [5, p. 96, Theorem 3.2], $h^1 \subset l$. Hence $h^m \subset l$ for m = 1, 2, 3, 3... (See 1.1.)

The following results will be used:

1.3. If E and F are BK-spaces with (C,k) - AK, then $(E \cap F \rightarrow C_k)$ $= (E \rightarrow C_k) + (F \rightarrow C_k)$ [4, p. 156, Theorem 4].

1.4. If r > -1, $p \ge 0$, $\sum_{k=1}^{\infty} k^{p-1} |x_k| < \infty$, then $\sum_{k=1}^{\infty} k^{p+r} |\Delta^{r+1} x_k| < \infty$ if and only if $\sum_{k=1}^{\infty} k^{p+r+1} |\Delta^{r+1} (x_k/k)| < \infty$ [3, p. 77]. If p = 0 in 1.4, we get for $r = 1, 2, ..., dl \cap dh_b^{r+1} = dl \cap v^{r+1}$. Hence for $r = 1, 2, ..., l \cap h_b^{r+1} = l \cap \int v^{r+1}$. Since $h^{r+1} \subset l$ for r = 0, 1, 2, ..., l

$$h^{r+1} = \int v_0^{r+1} \cap l.$$

- 2. The space of multipliers from h^n into C_{n-1} .
- 2.1 Lemma. $l^{\infty} \subset \sigma_{n-1,\infty}, \quad n = 1, 2, \ldots$

PROOF. The proof is by induction. Since $\sigma_{0,\infty} = \sigma_{\infty}$ the statement is true for n = 1. Assume

$$(2.2) l^{\infty} \subset \sigma_{k,\infty} for 1 \leqslant k < n,$$

(2.3)
$$\left| \frac{s_r^n(x)}{r^{n+1}} \right| < \frac{1}{r} \sum_{j=1}^r \left| \frac{s_j^{n-1}(x)}{j^n} \right|.$$

If $x \in l^{\infty}$, then by (2.2) $\sup_{j} |s_{j}^{n-1}(x)/j^{n}| \leq M < \infty$. Hence (2.3) implies $\sup_{r} |s_{r}^{n}(x)/r^{n+1}| \leq M$. Thus $l^{\infty} \subset \sigma_{n,\infty}$.

2.4 LEMMA. For k = 0, 1, 2, ..., n = 1, 2, ... and $x \in \omega$,

$$s_n^k(dx) = ns_n^k(x) - (k+1)s_{n-1}^{k+1}(x).$$

PROOF. Follows immediately from Abel's partial summation and definition of $s_n^k(x)$.

2.5 Proposition. For $k = 0, 1, 2, \ldots, d'C_k \subset \sigma_{k,\infty}$.

PROOF. It suffices to show that $C_k \subset \int \sigma_{k,\infty}$ for $k = 0, 1, 2, \ldots$ Let $x \in C_k$, then

(2.6)
$$\sup_{n} \left| \frac{s^{k}(x)}{n^{k}} \right| = M < \infty.$$

Since $C_k \subset C_{k+1}$ for $k = 0, 1, 2, \ldots$,

$$\sup_{n} \left| \frac{s_n^{k+1}(x)}{n^{k+1}} \right| = M' < \infty$$

for some M' > 0. From 2.4 we obtain

$$(2.8) s_n^k(dx) = ns_n^k(x) - (k+1)s_{n-1}^{k+1}(x) for n = 1, 2,$$

Now (2.6), (2.7) and (2.8) imply

$$\left| \frac{s_n^k(dx)}{n^{k+1}} \right| \le \left| \frac{s_n^k(x)}{n^k} \right| + (k+1) \left| \frac{s_{n-1}^{k+1}(x)}{n^{k+1}} \right| \le M + (k+1)M'$$

for all n. Hence $dx \in \sigma_{k,\infty}$, i.e., $x \in \int \sigma_{k,\infty}$.

2.9 Theorem. For
$$n=0, 1, 2, \ldots, \sigma_{n,\infty}=((\sigma_{n,\infty}\to C_n)\to C_n)$$
.

PROOF. Evidently $\sigma_{n,\infty} \subseteq ((\sigma_{n,\infty} \to C_n) \to C_n)$ for all n. Bosanquet proved that $(\sigma_{n,\infty} \to C_n) = h^{n+1}$ for $n = 0, 1, 2, \ldots [2, p. 296, Theorem A]$. For $n = 0, 1, 2, \ldots, h^{n+1} = \int v_0^{n+1} \cap l$, $n = 0, 1, 2, \ldots$ By [4, p. 155, Theorem 3], $\int v_0^{n+1}$ is a BK-space with (C, n) - AK. Since l is a BK-space with AK, it also has (C, n) - AK. From [4, p. 165, Theorem 4]

$$((\sigma_{n,\infty} \to C_n) \to C_n) = \left(\int v_0^{n+1} \cap l \to C_n \right)$$
$$= \left(\int v_0^{n+1} \to C_n \right) + (l \to C_n) \quad \text{for} \quad n = 0, 1, 2, \dots.$$

 $(\int v_0^{n+1} \to C_n) = d'C_n, n = 0, 1, 2, \dots [4, p. 156, Theorem 5].$ Since l has AK, $(l \to C_n) = (l \to C_0) = l^{\infty}$. Thus, by 2.1 and 2.5,

$$(2.10) \qquad ((\sigma_{n,\infty} \to C_n) \to C_n) = d'C_n + l^{\infty} \subset \sigma_{n,\infty}.$$

Hence $((\sigma_{n,\infty} \to C_n) \to C_n) = \sigma_{n,\infty}$ for $n = 0, 1, 2, \dots$

2.11 Corollary. For
$$n = 0, 1, 2, \ldots, \sigma_{n,\infty} = d'C_n + l^{\infty}$$
.

PROOF. See (2.10) in proof of 2.9.

Our main result can now be stated and proved.

2.12 Theorem. For
$$n = 1, 2, ..., (h^n \to C_{n-1}) = \sigma_{n-1,\infty}$$
.

PROOF. By 2.9 $\sigma_{n,\infty} = ((\sigma_{n,\infty} \to C_n) \to C_n)$ for $n = 0, 1, 2, \ldots$

$$h^n = (\sigma_{n-1} \circ \to C_{n-1})$$
 for $n = 1, 2, ...$

[2, p. 296, Theorem A]. Hence

$$(h^n \to C_{n-1}) = ((\sigma_{n-1,\infty} \to C_{n-1}) \to C_{n-1})$$
 for $n = 1, 2, \dots$

2.13 COROLLARY. For
$$n = 1, 2, ..., ((h^n \to C_{n-1}) \to C_{n-1}) = h^n$$
.

PROOF. Let n be a positive integer. $(h^n \to C_{n-1}) = \sigma_{n-1,\infty}$ by 2.12.

$$(\sigma_{n-1,\infty}\to C_{n-1})=h^n$$

by [2, p. 296, Theorem A].

REFERENCES

^{1.} L. S. Bosanquet, Note on convergence and summability factors, J. London Math. Soc. 20 (1945), 39-48. MR 7, 432.

^{2. —,} Note on convergence and summability factors. II, Proc. London Math. Soc. (2) 50 (1948), 295-304. MR 10, 112.

134 L. A. GAVIN

- 3. L. S. Bosanquet and H. C. Chow, Some remarks on convergence and summability factors, J. London Math. Soc. 32 (1957). 73-82. MR 18, 733.
- 4. G. Goes, Bounded variation sequences of order k and representation of null sequences, J. Reine Angew. Math. 253 (1972),152-161. MR 45 #9027.
- 5. G. Goes and S. Goes, Sequences of bounded variation and sequences of Fourier coefficients. I, Math. Z. 118 (1970), 93-102.

DEPARTMENT OF MATHEMATICS, CALIFORNIA STATE UNIVERSITY, SACRAMENTO, CALIFORNIA 95819 (Current address)

DEPARTMENT OF MATHEMATICS, XAVIER UNIVERSITY OF LOUISIANA, NEW ORLEANS, LOUISIANA 70125