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WHICH OPERATORS ARE SIMILAR TO PARTIAL ISOMETRIES?

L. A. FIALKOW

Abstract. Let % denote a separable, infinite dimensional complex Hubert

space and let £(DC) denote the algebra of all bounded linear operators on X

Let 9 = {Tin t(%)\r(T) < 1 and T is similar to a partial isometry with

infinite rank); let S = {S in e(0C)|r(S) < 1, range(S) is closed, and rank(S)

= nullityOS) = corank(5) = Nn}- It is conjectured that 9 = S and it is

proved that? C S C 9~.

Introduction. Let % denote a fixed separable, infinite-dimensional complex

Hubert space, and let £l(%) denote the algebra of all bounded linear operators

on X In [5], Sz.-Nagy proved that an invertible operator T in £(X) is similar

to a unitary operator if and only if the powers of T and T~x are uniformly

bounded; the proof of this result also implies that an operator is similar to an

isometry if and only if its powers are uniformly bounded above and below [4].

In this note we state the following conjecture concerning operators similar to

partial isometries, and then prove results which partially affirm the conjecture.

Conjecture. If T is an operator on % with closed range, whose spectral

radius is less than one, and such that rank(T) = nullity(T) = nullity(T*)

= N0, then T is similar to a partial isometry.

Let 9 = [T in t(%)\r(T) < 1 and T is similar to a partial isometry with

infinite rank}, where r(T) is the spectral radius of T; let S = {5 in t(%)\r(S)

< 1, range(S) is closed, and rank(5) = nullity(S') = corank(S) = N0}. It is

easy to prove that 9 E % and in this note we prove that 9 G % G 9~ (the

norm closure of 9 in £(X)). To state the results in detail we use the following

notation. If A and B are operators on % such that A* A + B* B is invertible,

let M (A, B) denote the operator on % © % whose matrix is (qB); let 5" denote

the set of all matrices of this form whose spectral radii are less than one. Each

operator in S is unitarily equivalent to a matrix in «J.

Theorem 1. The operator M(A, B) in 5" is similar to a partial isometry if any

of the following conditions are satisfied:

(i) 0 is not in the interior of a(A);

(ii) nullity(/l) = corank(/l);

(iii) nullity (A) < corank(/l) = N0 and B is not compact;

(iv)  B is a semi-Fredholm operator;

(v) corank(^4) < nullity(yl), A has closed range, and B*\E is not compact,

where

E = {y E %\3x G % 3 : A*x + B*y = 0}.
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Let (/) denote the ideal of all compact operators in £(DC © %). If T is in

£(DC © DC), let t denote the image of T under the canonical homomorphism of

£(DC © DC) onto the Calkin algebra £(DC © DC)/(7 ).

Theorem 2. If T = M(A,B) is in 3" then T is similar to a partial isometry if

either of the following conditions is satisfied:

(i) nullity(/4) and corank(,4) are finite;

(ii) B is compact.

Because these results do not cover the case corank(/f) <nullity(,4) = N0,

we do not know whether 9 = §. We note also that the proof of Theorem 1-iii

was motivated by the proof of a factorization theorem of R. G. Douglas [1,

Lemma 2.1]. The author thanks the referee for suggestions that have clarified

certain points in the original proofs of our results.

Proof of Theorems l and 2.

Lemma 0. IfT= M(A,B) is in% then the nonzero elements of a(T) anda(B)

are identical.

Proof. If X ¥= 0 and B - X is invertible, then a calculation shows that

(T - X)~~  is given by the operator matrix

i-i/x (-i/x)a(b-xyx\
i        I-

\    0 (B -X)~X       I

If X ¥= 0 and the inverse of T - X exists, denote this inverse by the operator

matrix (\ £) a calculation shows that Z = 0, so that W = (B - X)-1.

Lemma 1. If T is in % then T is similar to an operator M(A, B) such that

»fill < 1.

Proof. If T = M(A(T),B(T)), Lemma 0 implies that r(B(T)) < 1, and

Problem 122 of [3] implies that there exists an invertible operator X such that

\\XB(T)X~X\\ < 1. Since T is similar to M = M(A(T)X~X ,XB(T)X~X), the
proof is complete.

Lemma 2. If T is in 5 and nullity (A(T))= corankL^T)), then T is similar

to an operator M (A, B) such that A i£ 0 and \\B\\ < 1.

Proof. Consider the operator M of Lemma 1. We have nullityL4(r)A'"1)

= nullity(A(T))= corank^T)) = corankO^r)*"1), and thus A(T)X~X

= UP, where U is unitary and P is 0. Since M is unitarily equivalent to

M(P,XB(T)X'X), the proof is complete.

Lemma 3. Let T = M(A,B) be in 5 and suppose A*A + B* B g t2 > 0. If

\X\ > 1, then T is similar to M(A — e/X, B).

Proof. Theorem 1 of [1] implies that there exist operators Xx and X2 such

that Xx A + X2 B = e and Xx* Xx + X2*X2 ̂  1. Let |\| > 1 and let S denote

the operator on DC © DC whose matrix is
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(Xx - A     X2\

\    0        -A/"

Now S is invertible and a calculation shows that SM(A,B)S~X is of the

desired form.

Proof of Theorem 1-i. The operator M of Lemma 1 is similar to

M(XA(T)X~X,XB(T)X~X), and thus we may assume that ||£|| < 1 and 0 is

not in the interior of o(A). By an application of Lemma 3 with A suitably

chosen such that A — e/A is invertible and |A| > 1, we may assume that A is

invertible. Since ||fi|| < 1, we may define R = A (I - B* B)~x/2 and S = R

0 lx; a calculation shows that S~XTS = M((l - B*B)X/2, B), which is a

partial isometry, and therefore the proof is complete.

Proof of Theorem 1-ii. We may assume from Lemma 2 that A ê 0; the

result now follows from Theorem 1-i.

Proof of Theorem 1-iii. Recall that an operator B in Q(%) is not compact

if and only if the range of B contains a closed, infinite-dimensional subspace

(see, for example, Theorem 2.5 of [2] and Problem 141 of [3]). It follows from

this fact and an application of the open mapping theorem that B is not

compact if and only if B is bounded below on some closed, infinite-

dimensional subspace M G ker(7?) . Thus there exists 8 > 0 such that

\\Bm\\ g£ <5j|«z|| for all m in M. For each m in M, we set Xx(Bm) — Am. Now

HAiOOII = \\Am\\ g \\A\\\\m\\ ^ (\\A\\/8)\\Bm\\,

and it follows that Xx is a well-defined bounded linear operator defined on the

closed subspace B(M). Let Q denote the projection onto B(M), and let

X = Xx Q in £(%). Now M G ker(A - XB) and since (A - XB)% G A%, we

have dim ker(A — XB) = dim ker((A — XB) ) = N0. Since T is similar to

M (A - XB,B), the proof may be completed by an application of Theorem 1-

ii.

Proof of Theorem 1-iv. From Lemma 1, we may assume ||2?|| < 1. Recall

that an operator B in £(5£) is semi-Fredholm if B has closed range and if either

nullity(ß) or corank(7?) is finite. We consider first the case nullity(7?) < N0 ;

there exists an operator L and a finite rank operator K such that LB = 1 + K.

Let X — (\J\ - B*B - A)L and let S denote the operator on % ffi % whose

matrix is (¿f). A calculation shows that STS~X = M(\J\ - B*B + J,B),
where / is a finite rank operator. Since ||5|| < 1, \j\ — B*B + J is Fredholm

with index equal to zero, and the proof may be completed by an application

of Theorem 1-ii.
We now consider the case corank(7?) < N0. In this case B* has finite nullity

and closed range. Let 7* denote the projection onto the initial space of B* and

let Ê = {x G %\3y G P%such that/I* x + B*y = 0}. Since B* has closed

range, S is closed; since nullity (T*) = X0 and nullity (B*) < N0. It follows

readily that S is infinite dimensional. For each x in & there is a unique vector

Xx (x) in P% such that A* x + B* Xx (x) = 0. Since B* is bounded below on P%

the assignment x —> Xx (x) is bounded and linear on the closed subspace S. Let

Q denote the projection onto Si and let X = Xx Q in £(3i); thus S C

ker(/l + X* B*) . Since S is infinite dimensional and B is not compact, the

proof may be completed by an application of Theorem 1-ii-iii.
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Corollary. 5" C 9   .

Proof. The preceding result implies that if T is in ?Tand B(T) is either left

or right invertible, then T is in 9. Now there exists a sequence {Bk} G £(DC)

such that lim \\Bk - B(T)\\ = 0 and such that the sequence elements are either

all left invertible or all right invertible [3, Problem 109]. Since B* Bk + A* A

-> B* B + A* A, we may assume that each B* Bk +A*A is invertible; from the

upper semicontinuity of the spectrum we may assume each r(Bk) < 1.

Therefore, Theorem 1-iv implies that each M(A,Bk) is in 9, and the proof is

complete.

We now assume that T is in 5" and that A* has closed range and finite

nullity. Let E be as in Theorem 1-v; the hypotheses imply that £ is a closed,

infinite-dimensional subspace. In view of the previous results it is natural to

attempt to find an operator X such that corankL4 + XB) = N0; the following

result proves Theorem 1-v.

Proposition. There exists an operator X such that corank(/l + XB) = N0 if

and only if B*\E is not compact.

Proof. If 7i*|7i is not compact, the operator X may be constructed by a

straightforward modification of the proof of Theorem 1-iii; details are omitted.

For the converse, we assume that B* | E is compact. Suppose that there is an

operator X on DC and a closed, infinite-dimensional subspace K G DC such that

A*t = B*X*t for each / in K. Since dim ker(^*) < N0, it follows that

L = K n rangeL4) is infinite dimensional. Since A* has closed range, A* is

bounded below on L. Let (/„) denote an orthonormal basis for L. Now

tn -** 0, [X*(tn)} G E, and thus B*X* tn -+ 0. Therefore A* tn -+ 0, which is
a contradiction.

Proof of Theorem 2-i. Let A = UP denote the polar decomposition of A.

Since P2 + B* B is invertible, we may define Tx = M(P,B), and Lemma 0

implies that r(Tx) — r(B) = r(M(A,B)) < 1. Theorem 1-ii now implies that

Tx is similar to a partial isometry. Since the nullity and corank of U are finite,

Ü is unitary, and the proof is completed by noting that

TX-(U* ® \)T(U © 1)

is of finite rank.

Proof of Theorem 2-ii. Theorem 1 of [1] implies that there exist operators

Xx and X2 such that XXA + X2B = 1. Since B is compact, we have XXÄ = 1,

and thus A has closed range and finite nullity. If A = UP denotes the polar

decomposition of A, then P = Q © 0, where Q is invertible. Set R = Q~x

© \euP\ and S = i<x © R. Now S~x TS has the operator matrix

0 U

0    R~XBR/

which is the sum of a partial isometry and a compact operator.
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