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WHICH OPERATORS ARE SIMILAR TO PARTIAL ISOMETRIES?

L. A. FIALKOW

ABSTRACT. Let 3 denote a separable, infinite dimensional complex Hilbert
space and let 2(3() denote the algebra of all bounded linear operators on 3G
Let @ = {Tin £(%)|r(T) < 1 and T is similar to a partial isometry with
infinite rank}; let § = {S in £(3)|r(S) < 1, range(S) is closed, and rank(S)
= nullity(S) = corank(S) = 8g). It is conjectured that ¥ = § and it is
proved that# C S C 9~.

Introduction. Let IC denote a fixed separable, infinite-dimensional complex
Hilbert space, and let (3() denote the algebra of all bounded linear operators
on %. In [5], Sz.-Nagy proved that an invertible operator T in &(3() is similar
to a unitary operator if and only if the powers of T and T~! are uniformly
bounded; the proof of this result also implies that an operator is similar to an
isometry if and only if its powers are uniformly bounded above and below [4].
In this note we state the following conjecture concerning operators similar to
partial isometries, and then prove results which partially affirm the conjecture.

CoNJECTURE. If T is an operator on JC with closed range, whose spectral
radius is less than one, and such that rank(7) = nullity(7) = nullity(T*)
= Ny, then T is similar to a partial isometry.

Let ® = {T in £(30)|r(T) < 1 and T is similar to a partial isometry with
infinite rank}, where A(T) is the spectral radius of T; let § = {S in £(3C)|r(S)
< 1, range(S) is closed, and rank(S) = nullity(S) = corank(S) = 8,}. It is
easy to prove that ¢ C § and in this note we prove that $ C § C 9 (the
norm closure of ¢ in £(3()). To state the results in detail we use the following
notation. If 4 and B are operators on % such that 4*4 + B* B is invertible,
let M (4, B) denote the operator on 3 & IC whose matrix is (4); let I denote
the set of all matrices of this form whose spectral radii are less than one. Each
operator in § is unitarily equivalent to a matrix in 9.

THEOREM 1. The operator M(A, B) in J is similar to a partial isometry if any
of the following conditions are satisfied:

(1) 0 is not in the interior of o(A);

(ii) nullity(4) = corank(4);

(iii) nullity(4) < corank(4) = 8, and B is not compact;

(iv) B is a semi-Fredholm operator;

(v) corank(4) < nullity(4), A has closed range, and B*|E is not compact,
where

E={y € ¥|3x € X D: 4*x + B*y = 0}.
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Let (J) denote the ideal of all compact operators in 2(3 & C). If T is in
L(I @& ), let T denote the image of T under the canonical homomorphism of
£(3€ @ () onto the Calkin algebra (3¢ &® 3C)/(J).

THEOREM 2. If T = M(A,B) is in § then T is similar to a partial isometry if
either of the following conditions is satisfied:
(i) nullity(4) and corank(A) are finite;
(ii) B is compact.
Because these results do not cover the case corank(4) <nullity(4) = &,
we do not know whether # = S. We note also that the proof of Theorem 1-iii
was motivated by the proof of a factorization theorem of R. G. Douglas [1,

Lemma 2.1]. The author thanks the referee for suggestions that have clarified
certain points in the original proofs of our results.

Proof of Theorems 1 and 2.

LEMMA 0. IfT = M(A, B) is in 3, then the nonzero elements of o(T) and o(B)
are identical.

ProoOF. If A # 0 and B — A is invertible, then a calculation shows that
(T — M) 'is given by the operator matrix

<—1/>\ (=1/N)A(B — A)")
0 (B-x"" '

If A # 0 and the inverse of T — A exists, denote this inverse by the operator
matrix (% %) a calculation shows that Z = 0, so that W = (B — )™\,

LEMMA 1. If T is in 9, then T is similar to an operator M(A, B) such that
Bl < 1.

PrOOF. If T = M(A(T), B(T)), Lemma 0 implies that r(B(T)) < 1, and
Problem 122 of [3] implies that there exists an invertible operator X such that
IXB(T)X~'|| < 1. Since T is similar to M = M(A(T)X ™', XB(T)X "), the
proof is complete.

LEMMA 2. If T is in § and nullity(4(T))= corank(A(T)), then T is similar
to an operator M(A, B) such that A = 0 and |B|| < 1.

ProoF. Consider the operator M of Lemma 1. We have nullity(4(7)X )
=nullity (4(T')) = corank(4(T)) = corank (4(T)X '), and thus A(T)X !
= UP, where U is unitary and P = 0. Since M is unitarily equivalent to
M(P,XB(T)X "), the proof is complete.

LEMMA 3. Let T = M(A, B) be in 5 and suppose A*A + B*B = ¢ > 0. If
|| > 1, then T is similar to M(A — ¢/\, B).

ProoF. Theorem 1 of [1] implies that there exist operators X; and X, such
that X;4 + X, B = e and X;* X; + X,* X, = 1. Let |A| > 1 and let S denote
the operator on ¥ @ I whose matrix is
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XN=—A X
0 -\

Now S is invertible and a calculation shows that SM(4,B)S™' is of the
desired form.

PrROOF OF THEOREM 1-i. The operator M of Lemma 1 is similar to
M(XA(T)X ', XB(T)X "), and thus we may assume that ||B|| < 1 and 0 is
not in the interior of o(4). By an application of Lemma 3 with A suitably
chosen such that 4 — ¢/A is invertible and |A| > 1, we may assume that 4 is
invertible. Since ||B|| < 1, we may define R = A(1 — B*B)~ V2 and S = R
® ly; a calculation shows that S™!'TS = M((1- B*B )l /2 , B), which is a
partial isometry, and therefore the proof is complete.

PROOF OF THEOREM 1-ii. We may assume from Lemma 2 that 4 = O; the
result now follows from Theorem 1-i.

PROOF OF THEOREM 1-iii. Recall that an operator B in £(3() is not compact
if and only if the range of B contains a closed, infinite-dimensional subspace
(see, for example, Theorem 2.5 of [2] and Problem 141 of [3]). It follows from
this fact and an application of the open mapping theorem that B is not
compact if and only if B is bounded below on some closed, infinite-
dimensional subspace M C ker(B)®. Thus there exists & > 0 such that
|Bm|| = 8||m|| for all m in M. For each m in M, we set X;(Bm) = Am. Now

1% Bm)|| = ll4m| = |Allm| = (41/8)]Bml,

and it follows that X is a well-defined bounded linear operator defined on the
closed subspace B(M). Let Q denote the projection onto B(M), and let
X = X, Qin £(3). Now M C ker(4 — XB)and since (4 — XB)I C AXK, we
have dim ker(4 — XB) = dim ker((4 — XB)*) = N;. Since T is similar to
M(A — XB, B), the proof may be completed by an application of Theorem 1-
ii.

PROOF OF THEOREM l-iv. From Lemma 1, we may assume ||B|| < 1. Recall
that an operator B in £(3() is semi-Fredholm if B has closed range and if either
nullity(B) or corank(B) is finite. We consider first the case nullity(B) < 8¢;
there exists an operator L and a finite rank operator K such that LB = 1 + K.
Let X = (/1 — B*B — A)L and let S denote the operator on 3 @ IC whose
matrix is (}¥). A calculation shows that STS~ \/1 — B*B + J,B),
where J is a finite rank operator. Since || B < 1, l - B* B + J is Fredholm
with index equal to zero, and the proof may be completed by an application
of Theorem 1-ii.

We now consider the case corank (B) < 8. In this case B* has finite nullity
and closed range. Let P denote the projection onto the initial space of B* and
let & = {x € %|3y € PYK such that 4*x + B*y = 0}. Since B* has closed
range, & is closed; since nullity (7*) = ¥, and nullity (B*) < 8. It follows
readily that & is infinite dimensional. For each x in & there is a unique vector
X, (x) in P¥Csuch that A*x + B*X;(x) = 0. Since B* is bounded below on P
the assignment x — Xj(x) is bounded and linear on the closed subspace &. Let
Q denote the projection onto & and let X = X;Q in &(3(); thus & C
ker(4 + X*B*)*. Since & is inﬁnite dimensional and B is not compact, the
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COROLLARY. J C &,

Proor. The preceding result implies that if T is in § and B(7) is either left
or right invertible, then T is in 9. Now there exists a sequence {B,} C £(%()
such that lim ||B, — B(T')|| = 0 and such that the sequence elements are either
all left invertible or all right invertible [3, Problem 109]. Since Bjf B, + A* A4
— B*B + A* A, we may assume that each B} B, + A* 4 is invertible; from the
upper semicontinuity of the spectrum we may assume each r(B;) < I
Therefore, Theorem 1-iv implies that each M (4, B,) is in 9, and the proof is
complete.

We now assume that T is in § and that A* has closed range and finite
nullity. Let E be as in Theorem 1-v; the hypotheses imply that F is a closed,
infinite-dimensional subspace. In view of the previous results it is natural to
attempt to find an operator X such that corank(4 + XB) = 8,; the following
result proves Theorem 1-v.

PROPOSITION. There exists an operator X such that corank(4 + XB) = 8 if
and only if B*|E is not compact.

ProOF. If B*|E is not compact, the operator X may be constructed by a
straightforward modification of the proof of Theorem 1-iii; details are omitted.

For the converse, we assume that B*|E is compact. Suppose that there is an
operator X on ¥ and a closed, infinite-dimensional subspace K C ICsuch that
A*t = B*X*: for each ¢ in K. Since dim ker(4*) < &, it follows that
L = K N range(A4) is infinite dimensional. Since 4* has closed range, A* is
bounded below on L. Let {t,} denote an orthonormal basis for L. Now
t, 2> 0, {X*(t,)} C E, and thus B*X*t, — 0. Therefore 4*t, — 0, which is
a contradiction.

PROOF OF THEOREM 2-i. Let A = UP denote the polar decomposition of 4.
Since P2 + B* B is invertible, we may define T = M (P, B), and Lemma 0
implies that r(]) = r(B) = r(M(4,B)) < 1. Theorem 1-ii now implies that
T; is similar to a partial isometry. Since the nullity and corank of U are finite,
U is unitary, and the proof is completed by noting that

T —-(U*e )T(U ® 1)
is of finite rank.

PROOF OF THEOREM 2-ii. Theorem 1 of [1] implies that there exist operators
X, and X, such that X; 4 + X, B = 1. Since B is compact, we have X, 4 = 1,
and thus 4 has closed range and finite nullity. If 4 = UP denotes the polar
decomposition of 4, then P = Q @ 0, where Q is invertible. Set R = Q!
® lypyand § = Iy ® R. Now S~!TS has the operator matrix

0 U
0 R'BR)’

which is the sum of a partial isometry and a compact operator.
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