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METRIC SPACES IN WHICH
MINIMAL CIRCUITS CANNOT SELF-INTERSECT

DAVID SANDERS

Abstract. Definitions are given for self-intersecting polygons and co-

geodesic points in terms of betweenness, and then it is proved that the

metric spaces in which minimal polygons on a finite number of distinct

noncoigeodesic points are not self-intersecting are completely characterized

as those metric spaces which have the following betweenness property for

any four distinct points: if b is between a and c and between a and d then

either c is between a and d or d is between a and c.

1. Introduction. Minimal length circuits through a finite number of given

noncollinear points in a euclidean plane cannot be self-intersecting. A proof

of this theorem and also of the corresponding statement for points on a two

dimensional euclidean sphere appears in [2]. This paper raises and gives an

answer (cf. Theorem 2) to the question of how far this result can be

generalized.

The first step is to determine a context in which the statement makes sense.

A natural choice is geodesic metric spaces, i.e., metric spaces such that each

pair of points is joined by an arc of length equal to the distance between the

points. See [1] for a construction of examples of geodesic metric spaces.

However, the context for the problem of self-intersection of minimal

circuits can be broadened to any metric space (M, d) by defining intersection

in terms of betweenness (pq intersects rs if and only if there is some x

between p and a and also between r and s), and relating betweenness to

distance in the usual way (x is between p and a if and only if d(p, x) +

d(x, q) = d(p, q)). The definition of cogeodesic points (i.e. points contained

in some geodesic) can also be expressed in terms of betweenness so that the

context of geodesic metric spaces is subsumed (see Theorem 3 and its proof).

The essential condition for non-self-intersection of minimal circuits is a

natural property of betweenness (if b is between a and c, and also between a

and d 9* c, then either c is between a and d or d is between c and a).

Also note an extension of the context of the problem from geodesic to

arbitrary metric spaces cannot be achieved by embedding a given metric

space in a geodesic metric space (as can always be done) because whether or

not a minimal circuit will self-intersect will depend on the embedding. For

instance a metric space consisting of three points at unit distance from each
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other embeds in the euclidean plane so the minimal circuit on the three points

is not self-intersecting. But when this three point metric space is embedded in

a space consisting of three segments sharing a common endpoint with

distances measured along the segments, then the minimal circuit on the three

points must self-intersect.

2. Definitions and results. The distance between two points p and q will be

denoted by pq, and iqx q2 • • • qn) will mean that the points qx, q2, . . . , qn

are distinct, n > 3, and "2"k~=\qkqk+x =<7i<7„- The term polygon will be used for

orderings of n > 3 points (identified under cyclic permutations and their

inverses) and will be denoted by [pxp2 ■ ■ ■ p„\. Adjacent pairs of points in

the ordering, i.e. pxp2, . . . ,P„-iP„, P„P\ will be called edges of the polygon.

The term circuit will be reserved for any of the actual routes (unions of

geodesies) that correspond to a particular polygon in a geodesic metric space.

In a polygon [ ... ab ... cd ...] in a metric space M edge ab is said to

intersect edge cd if there exists x G M so iaxb) and icxd), or if icad), or

icbd), or iacb), or iadb). Also adjacent edges ab, be in a polygon

[ . . . abc . . . ] will be said to intersect if there exists x G M so that (axb) and

(bxc), or if iacb) or ibac). A polygon in a metric space then is non-self-

intersecting in that space if no pair of its edges intersect. Finally the distinct

points q,,..., qn will be called cogeodesic if there is some ordering of them

such that íq¡ • ■ • q¡ ).

Theorem 1. Given distinct noncogeodesic points px, . . . ,pn in a metric space

M satisfying for any x G M and j ¥= k ÍPjXpf) and íp¡xpk) imply Íp¡PjPk) or

ÍPiPkPj)' tnen any minimal polygon on px, . . . ,pn is not self-intersecting.

The proof of this theorem is given in §3. Now the strength of the theorem

and its consequences are discussed. First note that the converse to this

theorem does not hold because the hypothesis really guarantees more than is

concluded, viz., that a minimal polygon on any subset of the given nonco-

geodesic points is not self-intersecting. Thus in any example (such as the four

corners of a square considered in a metric space consisting of the four sides of

the square and an inscribed octagon with distance measured along the

segments) in which the minimal polygon is not self-intersecting but a minimal

polygon on a subset of the given points is self-intersecting, the converse to

Theorem 1 must fail. The appropriate biconditional is formulated in the next

theorem.

Theorem 2. In a metric space M, iabc) and iabd), c ¥= d imply (acd) or

(adc)for any four points a, b, c, d in M, if and only if any minimal polygon on a

finite number of distinct noncogeodesic points is not self-intersecting.

Proof. The only if part follows from Theorem 1. To establish the converse

assume for some distinct four points iabc), iabd), not iacd), and not iadc).

Then also not icad) because otherwise icad), iabc), iabd) give

cd =ca +ad =cb +ba +ab +bd >cd + 2ab contradicting a i= b. However

not iacd), not iadc) and not icad) means a, c, d are not cogeodesic and the

minimal, in fact only, polygon on these three points has an intersection of

edges ac and ad at b.
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The specialization of Theorem 1 to the context of geodesic metric spaces is

expressed in the last theorem.

Theorem 3. In a geodeisc metric space, given distinct noncogeodesic points

px, . . . ,pn such that if E is any geodesic joining p¡ and Pj and E' is any geodesic

joining pj andpk, then either E n 7s" = {/».} or p¡, pJ; pk are cogeodesic; then

any minimal circuit on the given n points cannot be self-intersecting.

Proof. This is a consequence of Theorem 1, the argument given in the

proof of Theorem 2 that (abc) and (abd) with c ¥= d imply not (cad), and the

following two facts. First, in a geodesic metric space if (abc) then there exists

a geodesic from a to c containing b. This follows from a slight modification of

the argument used to verify that the triangle inequality is satisfied by

d(p, q) = length of any minimal length arc joining p to q in spaces having

such geodesies, cf. [1, §111]. The second fact is that if a polygon is not

self-intersecting, then none of the circuits corresponding to it are self-

intersecting. Though it is not required in the proof of Theorem 3, note that if

a polygon is self-intersecting, some, but not necessarily all, corresponding

circuits self-intersect.

3. Proof of Theorem 1. The contrapositive will be demonstrated; i.e.,

assuming that a polygon Q on the vertices/?,, . . . ,pn is self-intersecting, show

that there is another polygon P onpx, . . . ,pn of strictly shorter length. Three

cases are considered:

Case 1. Suppose Q = [ ... ab ... cd ... ] has an intersection of edges ab

and cd where a, b, c, d are noncogeodesic. Let P = [ . . . a(b . . . c}d . . . ]

where this denotes the polygon resulting from Q when the order of the

vertices from b to c is reversed while the order of the other vertices is

unchanged. That length Q > length P will follow from ab + cd >ac + bd,

which is established in the following two subcases.

Case 1 (i). The intersection point x of ab and cd is distinct from a, b, c, d so

that (axb) and (cxd). Then ab +cd=ax +xb +cx +xd >ac +bd. If this

inequality were actually equality then (axe) and (bxd). But then (axe) and

(axb) by hypothesis give (abc) or (acb) and, therefore (axbc) or (axeb).

Similarly from (bxd) and (cxd) follow (bexd) or (cbxd). It is impossible to

have both (axbc) and (bexd) since (xbc) and (bcx) are incompatible. Similarly

(axeb) and (cbxd) cannot hold simultaneously. But (axbc) and (cbxd) imply

(axe) and (cxd) which imply, using the theorem hypothesis, (adxc) or (daxc)

which leads to (adxbc) or (daxbc) respectively, contradicting the initial

assumption for Case 1. Similarly (axeb) and (bexd) yield a, b, c, d co-

geodesic.

Case 1 (ii). The intersection point of ab and cd is one of the four points a,

b, c, d; say a to be specific so (cad). Then ab +cd =ab +ca +ad >ca +bd.

However, again the inequality must be strict, because otherwise (bad) with

(cad) gives (bed) or (cbd) which implies (bead) or (cbad) again contradicting

a, b, c, d noncogeodesic.

Case 2. Suppose Q = [ . . . ab . . . cd . . . ] has an intersection of edges ab

and cd where a, b, c,d are cogeodesic. By cyclically permuting the ordering of

Q, the possible cogeodesic orderings of a, b, c, d can be assumed to be

exhausted by the following three subcases.
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Case 2 (i), iabcd) or íabdc). This case cannot occur because each of the two

possible orderings is incompatible with the assumption that ab and cd

intersect. For instance if iabcd), whether the intersection point x of ab and cd

is distinct from a, b, c, d or not, then

ad = ab + be + cd = ax + xb + be + ex + xd > ad + bx + be + ex

which implies be = 0 contradicting b =£ c.

Case 2 (ii). iacbd) or iacdb). Then P = [ . . . a(b . . . c}d . . .] has length

strictly less than Q, because if iacbd) then iacb) and icbd) and it follows:

ab +cd =ac +cb +cb + bd >ac + bd. Similarly for iacdb).

Case 2 (iii). iadbc) or iadeb). Discussion of this situation is postponed until

the one remaining possibility is examined.

Case 3. Suppose Q = [ . . . abc . . .] has an intersection point x ^ b on

edges ab and be. If x <£ a and x ^ c then iaxb) and ibxc) which imply iacb)

or ibac). If x = a then ibac) and if x = c then iacb). Since by assumption all

the vertices of Q are not cogeodesic there must be another vertex which can

be indicated by Q = [ . . . abev . . .] if iacb) or by Q = [ . . . uabc . . . ] if

ibac). In the first situation edges ab and cv intersect in c; in the second

situation edges ua and be meet in a. Assuming, as may be done, that all

intersections considered in Cases 1 and 2(ii) have been already eliminated the

intersection just produced must belong in Case 2(iii). Thus all that remains is

to return and argue that case.

Suppose then that all Q = [ . . . rtabqx . . . qscdrx . . .], that all intersections

of the types considered in Cases 1 and 2(ii) have been previously removed,

and that ab and cd intersect as in Case 2(iii)—say iadbc). Then bqx and cd

intersect in b and since only intersections of type 2(iii) remain, either idbqxc)

or idbcqx). If idbqxc) then qxq2 intersects cd at qx and therefore either idqxq2c)

or idqxcq2). If, say the former, then cd meets q2q3 in q2 and either idq2q3c) or

idq2cq3). Assuming the latter, q2q3 and qsc intersect in c giving iq2cqsq3) or

iq2cq3qs). Continuing in this manner until the <7's are exhausted, regardless of

which choice holds at each step, an order of the vertices is established like

adbqxq2cqsq} ■ ■ • qv. Also running the same procedure through the r's pro-

duces an ordering of all the vertices, which might look like

[ru- ■ ■ r2rt-\rtar\db1\a2casa1,as-\<ls-2 ••• 9.,1-

Call this polygon P. Then by the construction length

Í-1  _ o-l _

p = S   Vfc+i + rta + ab + bqx+ 2   qkqk+i + %ru .
k=u k=\

Comparing with length Q shows length P < length Q if and only if

i-i _      _ «-i_

1vru < 2   °k1k+\ + 9,c + cd+ drx+  2 rkrk+x.
k=v k=\

But again by the construction of P, equality could hold here only if all the

vertices were cogeodesic between qv and ru. This completes the proof.
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