INEQUALITIES FOR ENTIRE FUNCTIONS OF EXPONENTIAL TYPE ## T. GENCHEV DEDICATED TO THE MEMORY OF N. OBRESHKOV (1896-1963)—MEMBER OF THE BULGARIAN ACADEMY OF SCIENCES ABSTRACT. This paper is concerned with a class of linear operators acting in the space of the trigonometric polynomials and preserving the inequalities of the form $|S(\theta)| < |T(\theta)|$ in the half plane Im $\theta > 0$. Some inequalities for entire functions of exponential type and some theorems concerning the distribution of the zeros of the trigonometric polynomials, including an analogue to the Gauss-Lucas theorem, are derived. 1. Introduction. Using interpolation series, R. P. Boas [1] obtains the following interesting extension of the classic S. Bernstein inequality: THEOREM. Let f(z) be an entire function of exponential type σ with $|f(z)| \leq M$ on the real axis. Then the inequality (1) $$|f(x+iy)e^{-iw} + f(x-iy)e^{iw}| \le 2M(\cosh^2\sigma y - \sin^2 w)^{1/2}$$, w real, holds. This theorem, as shown by Boas himself [1], has a number of important consequences. Our purpose is to give a new proof and some extension of (1). At the same time our method, which is based on a principle suggested by a paper of De Bruijn [2], and on a theorem of Obreshkov [3] concerning the zeros of the rational polynomials, allows us to prove some theorems about the zeros of the trigonometric polynomials, including a theorem analogous to the classic Gauss-Lucas theorem. 2. The principle mentioned above is given by THEOREM 1. Let \mathcal{K} be a closed subset of the complex plane C and let \mathcal{K} be a complex linear space of meromorphic functions with poles in \mathcal{K} . Further, let $L: \mathcal{K} \to \mathcal{K}$ be a linear operator and \mathcal{K} the subset of \mathcal{K} consisting of the functions having no zeros in $C \setminus \mathcal{K}$. Then the inequality |f(z)| < |g(z)|, $z \in C \setminus \mathcal{K}$, $f, g \in \mathcal{K}$, implies the inequality |L(f)(z)| < |L(g)(z)|, $z \in C \setminus \mathcal{K}$, if and only if $L(\mathcal{K}) \subset \mathcal{K}$. PROOF. Let us suppose that $L(\mathfrak{N}) \subset \mathfrak{N}$ and |f(z)| < |g(z)| in $C \setminus \mathfrak{K}$, but nevertheless, there exists $z_0 \in C \setminus \mathfrak{K}$ such that $|L(f)(z_0)| \ge |L(g)(z_0)|$. Intro- Received by the editors October 4, 1974. AMS (MOS) subject classifications (1970). Primary 30A04, 30A08; Secondary 30A40. Key words and phrases. Inequalities in the complex domain, trigonometric polynomials, extremal problems. ducing the functions $f - \lambda g$, where $\lambda = L(f)(z_0)[L(g)(z_0)]^{-1}$ (λ is well defined because $g \in \mathfrak{N}$ implies $L(g) \neq 0$ in $C \setminus \mathfrak{N}$), we obviously have $f - \lambda g \in \mathfrak{N}$, since $|\lambda| \geq 1$. Thus $L(f - \lambda g) = L(f) - \lambda L(g) \in \mathfrak{N}$. This is impossible, however, because $L(f - \lambda g)(z_0) = 0$. Considering the pair of f, g, where $f \equiv 0$ and $g \in \Re$ is arbitrary, we conclude that the condition $L(\Re) \subset \Re$ is necessary. In the sequel, except Theorem 1, we shall need a slight modification of the following elementary result due to Obreshkov [3]. THEOREM 2. Let \mathfrak{D} be the strip bounded by two parallel lines making angles of ϕ with the real axis and let all the zeros of the rational polynomial f(z) lie in \mathfrak{D} . Then all the zeros of the polynomial $$F(z) = f(z+h) - \gamma f(z-h)$$ where $|\gamma| = 1$ and $\arg h = \phi + \pi/2$, also lie in \mathfrak{D} . Because of the importance of this theorem for our considerations, we shall outline the proof of Obreshkov. **PROOF.** Let z_1, z_2, \ldots, z_n be the zeros of f(z) and let z_0 be a zero of F(z). Then we have $$\left| \frac{f(z_0 + h)}{f(z_0 - h)} \right| = 1$$ i.e. $\prod_{k=1}^{n} \left| \frac{z_0 + h - z_k}{z_0 - h - z_k} \right| = 1$. Supposing for a moment that z_0 lies outside \mathfrak{D} , we immediately come to a contradiction, because all the factors $|(z_0 + h - z_k)/(z_0 - h - z_k)|$, $k = 1, 2, \ldots, n$, are simultaneously less than or greater than 1. The same reasoning proves THEOREM 3. Let all the zeros of the rational polynomial f(z) lie in the half plane Im $z \le a$ and let h and k, $0 \le k \le h$, h > 0, be real numbers. Then the zeros of the polynomial $f(z + hi) - \gamma f(z - ki)$, $|\gamma| \le 1$, also lie in Im $z \le a$. It will be convenient for our purpose to introduce the following DEFINITION. A trigonometric polynomial of the form (2) $$T(\theta) = \sum_{\nu=-n}^{n} a_{\nu} e^{i\nu\theta}, \qquad a_{-n} \neq 0,$$ having no zeros in the half plane H: Im $\theta > 0$ is said to belong to class P_n . (In this paper by a trigonometric polynomial of degree not exceeding n we always mean an expression of the form (2) without any restriction on the coefficients.) REMARK. By means of the substitution $w = e^{i\theta}$ and the maximum principle, it is easily seen that in H the inequality $|\overline{T}(\theta)| \leq |T(\theta)|$ is satisfied, where $\overline{T}(\theta) = \sum_{\nu=-n}^{n} \overline{a}_{\nu} e^{-i\nu\theta}$ and \overline{a}_{ν} is the conjugate of a_{ν} . Consequently we have $T(-\theta) \in P$, where P is the class of the majorants studied by B. Levin and others [4, p. 129]. Now we are in a position to prove our main theorem. THEOREM 4. Let $S(\theta)$ and $T(\theta)$ be trigonometric polynomials of degree not exceeding n and $T(\theta) \in P_n$. Furthermore, let $S(\theta)$ and $T(\theta)$ be linearly independ- ent and satisfy the inequality $|S(\theta)| \leq |T(\theta)|$ on the real axis. Then the inequality (3) $$|S(\theta + \lambda i) - \tau S(\theta - \mu i)| < |T(\theta + \lambda i) - \tau T(\theta - \mu i)|$$, Im $\theta > 0$, where $0 \le \mu \le \lambda$, $\lambda > 0$ and $|\tau| \le (\cosh(\lambda/2)/\cosh(\mu/2))^{2n}$, is satisfied. PROOF. First of all by means of the substitution $w = e^{i\theta}$ and the maximum principle, we derive the inequality $|S(\theta)| < |T(\theta)|$ for $\theta \in H$. Furthermore, introducing polynomials $S_1(\theta) = S(\theta + \alpha)$, $T_1(\theta) = T(\theta + \alpha)$, where $\alpha \in H$ is arbitrary and fixed, we obviously have (4) $$|S_1(\theta)| < |T_1(\theta)|$$ for Im $\theta > -\text{Im } \alpha$. Now, setting $z = tg(\theta/2)$, we obtain (5) $$S_1(\theta) = P(z)/(1+z^2)^n$$, $T_1(\theta) = Q(z)/(1+z^2)^n$, where P(z) and Q(z) are rational polynomials of degree not exceeding 2n. Since the function $z = \operatorname{tg}(\theta/2)$ maps H to $H \setminus \{i\}$ and $Q(i) = 4^n a_{-n} e^{-in\alpha} \neq 0$, the inequality $$(6) |P(z)| < |Q(z)|, \operatorname{Im} z \ge 0,$$ follows from (4). Moreover, the relation $$\lim_{x \to \pm \infty} \left| \frac{P(x)}{O(x)} \right| = \lim_{\theta \to \pm \pi} \left| \frac{S_1(\theta)}{T(\theta)} \right| = \left| \frac{S(\alpha \pm \pi)}{T(\alpha + \pi)} \right| < 1, \quad x \text{ real,}$$ implies (6) in the half plane Im $z \ge -\varepsilon$, where $\varepsilon > 0$ is sufficiently small. In order to apply Theorem 1 let us denote by \Re the half plane Im $z \le -\varepsilon$, where $\varepsilon > 0$ is chosen so that (6) holds in $C \setminus \Re$. Let \Re be the complex space of rational polynomials of degree not exceeding 2n and let \Re be the subset of \Re consisting of the polynomials having no zeros outside \Re . According to Theorem 3, for the operator $$L(f) = f(z + hi) - \gamma f(z - ki), \qquad 0 \le k \le h, h > 0, |\gamma| \le 1, f \in \mathfrak{N},$$ we have $L(\mathfrak{N}) \subset \mathfrak{N}$. Recalling (6) and applying Theorem 1 we obtain $$(7) |P(z+hi)-\gamma P(z-ki)| < |Q(z+hi)-\gamma Q(z-ki)|$$ in $C \setminus \mathcal{K}$ and, in particular, in Im $z \ge 0$. Now let the real numbers λ , μ , $0 \le \mu \le \lambda$, $\lambda > 0$, be arbitrary. Setting z = 0, $h = \operatorname{tgh}(\lambda/2)$, $k = \operatorname{tgh}(\mu/2)$ in (7), by means of (5) we get $$\left| S(\alpha + \lambda i) - \gamma \left(\frac{\cosh(\lambda/2)}{\cosh(\mu/2)} \right)^{2n} S(\alpha - \mu i) \right|$$ $$< \left| T(\alpha + \lambda i) - \gamma \left(\frac{\cosh(\lambda/2)}{\cosh(\mu/2)} \right)^{2n} T(\alpha - \mu i) \right|,$$ and since $\alpha \in H$ is arbitrary, the proof of Theorem 4 is complete. REMARK. If we have $|S(\theta)| < |T(\theta)|$ on the real axis, then (3) is satisfied in the closed half plane Im $\theta \ge 0$. Indeed, it suffices to note that the inequality $|S(\theta)| < |T(\theta)|$ holds on the line Im $\theta = -\varepsilon$, where $\varepsilon > 0$ is sufficiently small, and to apply Theorem 4 to the pair $S(\theta - i\varepsilon)$, $T(\theta - i\varepsilon)$. COROLLARY 1. Let us set $\tau = 1$ in (3) and, after dividing by $\lambda - \mu$, let $\lambda \to 0$, $\mu \to 0$. Then we get the known inequality [4] (8) $$|S'(\theta)| \le |T'(\theta)|, \quad \text{Im } \theta \ge 0,$$ which obviously includes Bernstein's inequality. Furthermore, applying Theorem 4 with $\tau = e^{2iw}$, w real, to the pair $e^{-iw}S(\theta)$ and $e^{-iw}T(\theta)$, we obtain the inequality (9) $$|e^{-iw}S(\theta + \lambda i) + e^{iw}S(\theta - \mu i)| < |e^{-iw}T(\theta + \lambda i) + e^{iw}T(\theta - \mu i)|,$$ $$\text{Im } \theta > 0, 0 \le \mu \le \lambda,$$ so that the linear operator $T(\theta) \to e^{-iw} T(\theta + \lambda i) + e^{iw} T(\theta - \mu i)$, acting on the space of the trigonometric polynomials, leaves the class P_n invariant and preserves inequalities of the form $|S(\theta)| < |T(\theta)|$ in the half plane Im $\theta > 0$. Hence it is a B-operator in the sense of Levin [4, p. 226]. COROLLARY 2. Let us consider the operator $$L_{f}(R)(\theta) = \sum_{\nu=0}^{m} C_{\nu} R(\theta + (m-\nu)\lambda i - \nu \mu i), \qquad 0 \leq \mu \leq \lambda, \lambda > 0,$$ where $f(z) = \sum_{\nu=0}^{m} C_{\nu} z^{m-\nu}$ is fixed, $R(\theta)$ being a trigonometric polynomial. If all the zeros of f(z) lie in the circle $|z| \leq (\cosh(\lambda/2)/\cosh(\mu/2))^{2n}$, the inequality (10) $$|L_f(S)(\theta)| < |L_f(T)(\theta)|, \quad \text{Im } \theta > 0,$$ is satisfied. One may prove this corollary by applying Theorem 4 successively with $\tau = \gamma_k, k = 1, 2, ..., m$, where $\{\gamma_k\}$ are the zeros of f(z). In turn, inequality (10) implies COROLLARY 3. If $$T(\theta) \in P_n$$, then $L_f(T)(\theta) \in P_n$. PROOF. Applying (10) to the pair $S(\theta) \equiv 0$, $T(\theta)$, we see that $L_f(T)(\theta)$ has no zeros in the half plane Im $\theta > 0$. Since $L_f(T)(\theta)$ obviously has the form (2), the corollary is proved. Now we may state a theorem analogous to a theorem of L. Weisner [6]. THEOREM 5. If $T(\theta) \in P_n$, then (11) $$L(T)(\theta) = \int_{\theta - ui}^{\theta + \lambda i} T(t) dt, \qquad 0 \le \mu \le \lambda, \lambda > 0,$$ also belongs to Pn. PROOF. First of all it is immediately seen that $L(T)(\theta)$ has the form (2). Since the zeros of the polynomial $\sum_{\nu=0}^{m} z^{\nu}$ lie on the circle |z|=1, according to Corollary 3 the zeros of the Riemann sums $$T_m(\theta) = \frac{(\lambda + \mu)i}{m} \sum_{\nu=1}^m T\left(\theta + \frac{\lambda i}{m}(m - \nu) - \frac{\mu\nu}{m}i\right)$$ lie in Im $\theta \leq 0$ and the conclusion follows from the Hurwitz theorem. THEOREM 6. If the conditions of Theorem 4 are satisfied, the inequality $|L(S)(\theta)| < |L(T)(\theta)|$, Im $\theta > 0$, where the operator L is given by (11), holds. PROOF. Let \mathfrak{N} be the complex linear space of trigonometric polynomials of degree not exceeding n, and $\mathfrak{N} = P_n$. According to Theorem 5 we have $L(\mathfrak{N}) \subset \mathfrak{N}$ and we complete the proof by applying Theorem 1. Now we need the following DEFINITION. A trigonometric polynomial of the form $$T(\theta) = \sum_{\nu=-n}^{n} a_{\nu} e^{i\nu\theta}, \quad a_{n} a_{-n} \neq 0,$$ will be called balanced. The following theorem is analogous to Theorem 2. THEOREM 7. Let $T(\theta)$ be a balanced trigonometric polynomial with zeros in the strip $a \leq \text{Im } \theta \leq b$. Then all the zeros of $N(\theta) = T(\theta + \lambda i) - \gamma T(\theta - \lambda i)$, $|\gamma| = 1, \lambda > 0$, also lie in this strip. PROOF. Obviously $T(\theta + bi)$ belongs to P_n . Applying Theorem 4 to the pair $S(\theta) \equiv 0$ and $T(\theta + bi)$, we conclude that $N(\theta) \neq 0$ in Im $\theta > b$. Since $T(-\theta + ai) \in P_n$ by the same reasoning $N(\theta)$ has no zeros in Im $\theta < a$. COROLLARY 1. (Gauss-Lucas theorem for trigonometric polynomials.) If $T(\theta)$ is balanced and has zeros only in the strip Ω : $a \leq \text{Im } \theta \leq b$, the zeros of its derivative $T'(\theta)$ also lie in Ω . PROOF. Letting $\lambda \to 0$ in $(T(\theta + \lambda i) - T(\theta - \lambda i))/\lambda$ and applying Hurwitz's theorem, we obtain the proof. Going into details, one could prove that $T'(\theta)$ may have a zero θ_0 on one of the lines Im $\theta = a$, Im $\theta = b$, such that $T(\theta_0) \neq 0$, if and only if all the zeros of $T(\theta)$ lie on the same line [5]. COROLLARY 2. If $T(\theta)$ is balanced and has zeros only in the strip Ω , then all the zeros of the trigonometric polynomial $$L(T)(\theta) = \int_{\theta-\lambda i}^{\theta+\lambda i} T(t) dt, \quad \lambda > 0,$$ also lie in Ω . PROOF. This corollary can be deduced from Theorem 7 exactly as Theorem 5 was deduced from Corollary 3 of Theorem 4. 3. It is obvious that Theorem 4, with $|\tau| \le 1$, could be extended to the case when $S(\theta)$ and $T(\theta)$ are entire functions of exponential type belonging to appropriate classes. Here, for the sake of brevity, we shall confine ourselves to deriving some consequences of Theorem 4 concerning entire functions of exponential type bounded on the real axis, including Boas' inequality. 188 T. GENCHEV Let f(z) be an entire function of exponential type σ , subject to the condition $|f(z)| \leq M$ on the real axis. According to a theorem of B. Levitan [7, p. 193], there exists a sequence of trigonometric polynomials $S_n(z) = \sum_{\nu=-n}^n a_{\nu,n} e^{-i\nu\sigma z/n}$, tending uniformly to f(z) on every bounded set, and such that the inequality $|S_n(z)| \leq M$ is satisfied on the real axis. Applying (9) to the pair $S_n((n/\sigma)\theta)$ and $Me^{-in\theta}$, we obtain (12) $$\left| e^{-iw} S_n \left(\frac{n}{\sigma} (\theta_n + \lambda_n i) \right) + e^{iw} S_n \left(\frac{n}{\sigma} (\theta_n - \mu_n i) \right) \right| \\ \leq M \left| e^{-in\theta_n} \right| \left| e^{-iw + n\lambda_n} + e^{iw - n\mu_n} \right|$$ where $\theta_n = \sigma z/n$, Im $z \ge 0$, $\lambda_n = \sigma \lambda/n$, $\mu_n = \sigma \mu/n$, $0 \le \mu \le \lambda$, $\lambda > 0$. Letting $n \to \infty$ in (12) we get (13) $$|e^{-iw}f(z+\lambda i) + e^{iw}f(z-\mu i)|$$ $$\leq M|e^{-iw}e^{-i\sigma(z+\lambda i)} + e^{iw}e^{-i\sigma(z-\mu i)}|, \qquad 0 \leq \mu \leq \lambda, \text{ Im } z \geq 0,$$ in which Boas' inequality is included. Finally, applying (13) twice with $w = \pi/2$, z real, $\lambda = |y|$, $\mu = 0$ to the functions f(z) and f(-z), we obtain (14) $$|f(x+iy)-f(x)| \le M(e^{\sigma|y|}-1), \quad x, y \text{ real},$$ from which Bernstein's inequality follows again. In the same way we deduce from Theorem 6 the inequality (15) $$\left| \int_{z-\mu i}^{z+\lambda i} f(t) dt \right| \le M \left| \int_{z-\mu i}^{z+\lambda i} e^{-i\sigma t} dt \right| \le \frac{M}{\sigma} \left| e^{\sigma(y+\lambda)} - e^{\sigma(y-\mu)} \right|$$ where $0 \le \mu \le \lambda$, $y = \text{Im } z \ge 0$, and of course, $|f(z)| \le M$ on the real axis. The inequalities (14) and (15) are obviously exact. ## REFERENCES - 1. R. P. Boas, Inequalities for functions of exponential type, Math. Scand. 4 (1956), 29-32. MR 19. 24. - 2. N. G. de Bruijn, Inequalities concerning polynomials in the complex domain, Nederl. Acad. Wetensch. Proc. 50 (1947), 1265—1272 = Indag. Math. 9 (1947), 591—598. MR 9, 347. - 3. N. Obrechkoff, Sur les racines des equations algébriques, Tôhoku Math. J. 38 (1933), 93—100. - 4. R. P. Boas, Jr., Entire functions, Academic Press, New York, 1954. MR 16, 914. - 5. T. Genchev, A Gauss-Lucas type theorem on trigonometric polynomials, C.R. Acad. Sci. Bulgare 28 (1975), 449-451. - 6. L. Weisner, On the regional location of the zeros of certain functions, Tôhoku Math. J. 44 (1937), 175—177. - 7. N. I. Ahiezer, Lectures on the theory of approximation, 2nd rev. ed., "Nauka", Moscow, 1965; English transl. of 1st ed., Ungar, New York, 1956. MR 20 #1872; 32 #6108. MATHEMATICS FACULTY OF SOFIA UNIVERSITY, BOUL. A. IVANOV 5, SOFIA 1126, BULGARIA