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Dedicated to the memory of N. Obreshkov (1896-1963)—member of

the Bulgarian Academy of Sciences

Abstract. This paper is concerned with a class of linear operators acting

in the space of the trigonometric polynomials and preserving the inequalities

of the form \S(8)\ < \T(8)\ in the half plane Im 8 > 0. Some inequalities for

entire functions of exponential type and some theorems concerning the

distribution of the zeros of the trigonometric polynomials, including an

analogue to the Gauss-Lucas theorem, are derived.

1. Introduction. Using interpolation series, R. P. Boas [1] obtains the

following interesting extension of the classic S. Bernstein inequality:

Theorem. Letf(z) be an entire function of exponential type a with \f(z)\ ê M

on the real axis. Then the inequality

(1)   I/O + iy)e~iw +f(x - iy)eiw\ â 2 M(cosh2 ay - sin2w)1/2,        w   real,

holds.

This theorem, as shown by Boas himself [1], has a number of important

consequences. Our purpose is to give a new proof and some extension of (1).

At the same time our method, which is based on a principle suggested by a

paper of De Bruijn [2], and on a theorem of Obreshkov [3] concerning the

zeros of the rational polynomials, allows us to prove some theorems about the

zeros of the trigonometric polynomials, including a theorem analogous to the

classic Gauss-Lucas theorem.

2. The principle mentioned above is given by

Theorem 1. Let % be a closed subset of the complex plane C and let 911 be a

complex linear space of meromorphic functions with poles in %. Further, let

L: 911 —> 911 be a linear operator and 91 the subset of 9H consisting of the functions

having no zeros in C\% Then the inequality \f(z)\ < \g(z)\, z G C\% f, g

G 91t, implies the inequality |L(/)(z)| < |L(g)(z)|, z G C\% if and only if
L(%) G 9L

Proof. Let us suppose that L(9t) C 91 and |/(z)| < |g(z)| in C\% but

nevertheless, there exists z0 G C\9Csuch that |L(/)(z0)| è |L(g)(z0)|. Intro-

-
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ducing the functions /- Xg, where X = L(f)(zQ)[L(g)(z0)] '

(X is well defined because g G 91 implies L(g) ¥= 0 in C\%), we obviously

have f-Xg G % since |A| â 1. Thus L(f - Xg) = L(f) - XL(g) G 9L
This is impossible, however, because L(f- Xg)(z0) = 0.

Considering the pair of /, g, where / = 0 and g G 91 is arbitrary, we

conclude that the condition L(9l) C 91 is necessary.

In the sequel, except Theorem 1, we shall need a slight modification of the

following elementary result due to Obreshkov [3].

Theorem 2. Let fy be the strip bounded by two parallel lines making angles

of <¡> with the real axis and let all the zeros of the rational polynomial f(z) lie in

ty. Then all the zeros of the polynomial

F(z) — f(z + h) — yf(z — h)    where \y\ = 1 and arg h = $ + 77/2,

also lie in 6D.

Because of the importance of this theorem for our considerations, we shall

outline the proof of Obreshkov.

Proof. Let zx, z2, ..., zn be the zeros of f(z) and let z0 be a zero of F(z).

Then we have

/('o + h)

/(*o - A)
i.e. n

k=\

z0 + h - zk

z0 - h- zk

Supposing for a moment that z0 lies outside <$, we immediately come to a

contradiction, because all the factors |(z0 + « — zk)/(z0 - « — zk)\, k = 1,2,

...,«, are simultaneously less than or greater than 1.

The same reasoning proves

Theorem 3. Let all the zeros of the rational polynomial f(z) lie in the half

plane Imzi a and let h and k, 0 â k 2= h, h > 0, be real numbers. Then the

zeros of the polynomial f(z + hi) — yf(z — ki), \y\ ^ 1, also lie in Im z á a.

It will be convenient for our purpose to introduce the following

Definition. A trigonometric polynomial of the form

(2) T(9)=    2   areM,       a_n * 0,
v = —n

having no zeros in the half plane H: Im 9 > 0 is said to belong to class Pn.

(In this paper by a trigonometric polynomial of degree not exceeding « we

always mean an expression of the form (2) without any restriction on the

coefficients.)

Remark. By means of the substitution w = e'e and the maximum principle,

it is easily seen that in H the inequality \T(6)\ g \T(9)\ is satisfied, where

T(0) = 2"=-« 3pe~ and av is the conjugate of a„. Consequently we have

T(—9) G P, where P is the class of the majorants studied by B. Levin and

others [4, p. 129].

Now we are in a position to prove our main theorem.

Theorem 4. Let S(9) and T(9) be trigonometric polynomials of degree not

exceeding « and T(9) G Pn. Furthermore, let S(9) and T(9) be linearly independ-
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ent and satisfy the inequality \S(9)\ 2= 17X0)1 on the real axis. Then the inequality

(3) \S(0 + Xi) - tS(0 - pi)\ < \T(0 + Xi) - tT(9 - (ii)\,       Im 0 > 0,

where OïiuSsA, A > 0 and |t| Si (cosh(A/2)/cosh(/t/2))   , is satisfied.

Proof. First of all by means of the substitution w = e'9 and the maximum

principle, we derive the inequality \S(6)\ < \T(9)\ for 9 G 77. Furthermore,

introducing polynomials Sx(9) = S(9 + a), Tx(9) = T(9 + a), where a G 77

is arbitrary and fixed, we obviously have

(4) |Si (0)| < |7i(0)|    for Im 0 > -Im «.

Now, setting z = tg(0/2), we obtain

(5) sx(9) = p(z)/(i + z2r,    tx(9) - e(z)/(i + z2r,

where P(z) and Q(z) are rational polynomials of degree not exceeding 2«.

Since the function z = tg(0/2) maps 77 to H\{i) and Q(i) = 4"a_ne"""" ^= 0,

the inequality

(6) |P(z)| < |ß(z)|,

follows from (4). Moreover, the relation

Im z ê 0,

lim
*-»±oo

=   lim
S,(0)

7,(0)

S(a ± it)

T(a ± ir)
< 1, x real,

implies (6) in the half plane Im z ^ —e, where e > 0 is sufficiently small.

In order to apply Theorem 1 let us denote by % the half plane Im z 2= —e,

where e > 0 is chosen so that (6) holds in C \9C Let 911 be the complex space

of rational polynomials of degree not exceeding 2« and let 91 be the subset of

911 consisting of the polynomials having no zeros outside % According to

Theorem 3, for the operator

L(f) = f(z + hi) - yf(z - ki),       0 á k á h, h > 0, M á 1,/ G 91L,

we have L(%) G 9L Recalling (6) and applying Theorem 1 we obtain

(7) |P(z + Ail- yP(z - ki)\ < \Q(z + hi)- yQ(z - ki)\

in C \% and, in particular, in Im z ^ 0.

Now let the real numbers X, /x, 0 â /x á X, X > 0, be arbitrary. Setting

z = 0, h = tgh(À/2), k = tgh(u/2) in (7), by means of (5) we get

.2«0/       ...       /cosh(A/2)Y" .,

. I        . ,.v       / cosh (A/2) \2"
<\T{a + Xl)-A^snW2))   r(a_M/

and since a G 77 is arbitrary, the proof of Theorem 4 is complete.

Remark. If we have |S(0)| < |T(0)| on the real axis, then (3) is satisfied in
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the closed half plane Im 9 g 0. Indeed, it suffices to note that the inequality

|S(f9)| < |T(t9)| holds on the line Im 9 = —e, where e > 0 is sufficiently small,

and to apply Theorem 4 to the pair S(9 — ie), T(9 — is).

Corollary 1. Let us setr = 1 in (3) and, after dividing byX — u, let X -* 0,

u —* 0. Then we get the known inequality [4]

(8) \S'(9)\ ^ \T'(9)\,       Imigfl,

which obviously includes Bernstein's inequality. Furthermore, applying Theorem 4

with t = e2m, w real, to the pair e~m S(9) and e~'wT(9), we obtain the inequality

\e~iwS(9 + Xi) + eiwS(9 - u/)| < \e~iwT(9 + Xi) + eiwT(9 - ui)|,

Im 9 > 0, 0 á ft ^ X,

so that the linear operator T(9) -* e~'wT(9 + Xi) + e'wT(9 - ¡xi), acting on the

space of the trigonometric polynomials, leaves the class Pn invariant and preserves

inequalities of the form \S(9)\ < |T(f9)| in the half plane Im 9 > 0. Hence it is a

B-operator in the sense of Levin [4, p. 226].

Corollary 2.    Let us consider the operator

m

LÂR)(9) =  2  CVR(9 + (m- p)Xi - vui),       0 â u á X, X > 0,
»=0

where f(z) = 2¡T=0 Cvzm~v is fixed, R(9) being a trigonometric polynomial. If all

the zeros off(z) lie in the circle \z\ S¡ (cosh(À/2)/cosh(/x/2))   , the inequality

(10) \Lf(S)(9)\<\Lj(T)(9)\,       Lm0>O,

is satisfied.

One may prove this corollary by applying Theorem 4 successively with

t = yk, k = 1, 2, ..., m, where {yk} are the zeros of f(z).

In turn, inequality (10) implies

Corollary 3.   // T(9) E Pn, then Lf(T)(9) E P„.

Proof. Applying (10) to the pair S(9) = 0, T(9), we see that Lf(T)(9) has
no zeros in the half plane Im 9 > 0. Since LA[T)(9) obviously has the form

(2), the corollary is proved.

Now we may state a theorem analogous to a theorem of L. Weisner [6].

Theorem 5.   // T(9) E Pn, then

(11) L(T)(9) = C+X' T(t)dt,       0 g ft á X, X > 0,
Ju—111

also belongs to Pn.

Proof. First of all it is immediately seen that L(T)(9) has the form (2).

Since the zeros of the polynomial 2r=0 z" ue on tne circle |z| = 1, according

to Corollary 3 the zeros of the Riemann sums
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Tj9) = (A±i)ifT(e + M(m_v)_ELl)
mK ' m      **     \       mK 'ml

lie in Im 0 S 0 and the conclusion follows from the Hurwitz theorem.

Theorem 6. If the conditions of Theorem 4 are satisfied, the inequality

|L(5)(0)| < \L(T)(9)\, Im 0 > 0, where the operator L is given by (11), holds.

Proof. Let 91L be the complex linear space of trigonometric polynomials of

degree not exceeding n, and 91 = Pn. According to Theorem 5 we have

L(%) G 91 and we complete the proof by applying Theorem 1.

Now we need the following

Definition. A trigonometric polynomial of the form

T(9)=   ¿   a,«**,       ana_n*0,
V

will be called balanced.
The following theorem is analogous to Theorem 2.

Theorem 7. Let T(9) be a balanced trigonometric polynomial with zeros in

the strip a ^ Im 0 ^ b. Then all the zeros ofN(9) = T(9 + Xi) - yT(9 - Xi),

\y\ = 1, X > 0, also lie in this strip.

Proof. Obviously T(9 + bi ) belongs to Pn. Applying Theorem 4 to the pair

S(9) = 0 and T(9 + bi), we conclude that #(0) ¥= 0 in Im 0 > b. Since

T(—9 + ai) G Pn, by the same reasoning A^(0) has no zeros in Im 0 < a.

Corollary 1. (Gauss-Lucas theorem for trigonometric polynomials.) If T(9)

is balanced and has zeros only in the strip fi: a á Im 0 â b, the zeros of its

derivative T'(9) also lie in ß.

Proof. Letting X -> 0 in (T(9 + Xi) - T(9 - Xi))/X and applying Hur-
witz's theorem, we obtain the proof.

Going into details, one could prove that T'(9) may have a zero 0O on one of

the lines Im 9 = a, Im 0 = b, such that T(0O) ¥= 0, if and only if all the zeros

of T(9) lie on the same line [5].

Corollary 2. If T(9) is balanced and has zeros only in the strip ß, then all

the zeros of the trigonometric polynomial

X0+Xi_x/   T(t)dt,       X>0,

also lie in £2.

Proof. This corollary can be deduced from Theorem 7 exactly as Theorem

5 was deduced from Corollary 3 of Theorem 4.

3. It is obvious that Theorem 4, with |t| â 1, could be extended to the case

when S(9) and T(9) are entire functions of exponential type belonging to

appropriate classes. Here, for the sake of brevity, we shall confine ourselves to

deriving some consequences of Theorem 4 concerning entire functions of

exponential type bounded on the real axis, including Boas' inequality.
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Let f(z) be an entire function of exponential type a, subject to the condition

|/(z)| gMon the real axis. According to a theorem of B. Levitan [7, p. 193],

there exists a sequence of trigonometric polynomials Sn(z)

= ^1"=-nav>ne~"",z'n, tending uniformly to f(z) on every bounded set, and

such that the inequality |5„(z)| ^ M is satisfied on the real axis. Applying (9)

to the pair Sn((n/a)9) and Me~M, we obtain

(12)
'Snfan + KO) + eiwS„^(9„ - M))|

s= M\e~'"e"\\e~'w+nX" + eiw~nii"\

where 9n = oz/n, Im z è 0, Xn = aX/n, u„ = au/«, 0 Si ¡i ^ X, X > 0.

Letting « -» oo in (12) we get

\e-iwf(z + Xi) + e™f(z-i>,i)\
(13)

^ 7V/|e-''we-'o(z+x''' + i*V**-*>|,        0 ê u ë X, Im z è 0,

in which Boas' inequality is included.

Finally, applying (13) twice with w = it/2, z real, X = |_y|, u = 0 to the

functions 7(2) and/(—z), we obtain

(14) \f(x + iy) -f(x)\ g M(ea^ - 1),       x, y real,

from which Bernstein's inequality follows again.

In the same way we deduce from Theorem 6 the inequality

(15)
•z+Airz+Xi r z+)

J     . f(t)dt   ^M . e -¡at dt < K\eo(y+\) _ eo(y-ii)\

where 0 á ¡x á X,y = Im z è 0, and of course, |/(z)| í Mon the real axis.

The inequalities (14) and (15) are obviously exact.
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