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ON THE TOPOLOGICAL COMPLETION

HOWARD CURZER AND ANTHONY W. HAGER1

Abstract. Let A be a Tychonoff space. As is well known, the points of the

Stone-Cech compactification ßX "are" the zero-set ultrafilters of X, and the

points of the Hewitt real-compactification vX are the zero-set ultrafilters

which are closed under countable intersection. It is shown here that a zero-

set ultrafilter is a point of the Dieudonné topological completion SX iff the

family of complementary cozero sets is a-discretely, or locally finitely,

additive. From this follows a characterization of those dense embeddings

X C Y such that each continuous metric space-valued function on X extends

over Y, and a somewhat novel proof of the Katëtov-Shirota Theorem.

All spaces shall be Tychonoff.

It is most convenient to view the class of topologically complete spaces as

the class 91(911) of closed subspaces of products from the class <3It of metrizable

spaces, that is, as the epireflective hull of 91L (Dieudonné showed that a

Tychonoff space X has a compatible complete uniformity iff X admits an

embedding with closed range into a product of metrizable spaces [D].) The

topological completion SX of a Tychonoff space X is the epireflection of X

into 91(911), that is, 8X is the essentially unique topologically complete space

containing X densely such that each continuous map/: X -* Z (Z G 91(911)),

admits a continuous extension 8f: 8X -* Z. This universal mapping property

is implied by the weaker one for maps into spaces in 911, by the standard

technique used to show for ßX that the universal mapping property for maps

to [0, 1] implies the property for maps to compact spaces. See, e.g., [W]. We

shall use this fact below.

SA' may be constructed as the closure of a suitable homeomorph of A in a

large product of metrizable spaces, similar to the common construction of ßX

(e.g., [W]). The following is a more useful construction for our purpose. It

depends on knowledge of ßX.

1. Lemma. 8X = r){(ßf)~l(M)\f: X -» M continuous, M G 91t). (Here

ßf: ßX —* ßM is the extension over the Stone-Cech compactifications.)

We sketch a proof of 1. Let Y = DM{(ßf)~l(M)). Clearly, a continuous

map/: X ~* M has the extension ßf\Y: Y —> M, so it suffices to show that

Y G 91(911). Since 91(911) is productive and closed-hereditary, it is closed under

intersection (seen by realizing an intersection as a diagonal in a product), so it
-
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suffices that each (ßf)~X(M) G 91(911). Now 9l(91t) is closed-hereditary, and

A X K G 91(911) if A G 91(911) and K is compact-since K G 91(911); this
implies that 91(911) is closed under perfect pre-images [HS]. (A continuous map

g: A -» B is called perfect if ßgißA - A) G ßB - B.) But clearly, each

ßf\(ßf)~\M) is perfect
(Something close to 1 appears in [F], from which we have borrowed the

proof. Also see [H].)

It might be noted that one can view the class of realcompact spaces as the

epireflective hull 9l(R) of the real line R (i.e., closed subspaces of powers of R),

and then construct the epireflection vX-ihe Hewitt realcompactification-just

as above:

vx= n{ißf)~\R)\f g c(x)l
CiX) being the ring of real-valued continuous functions.

In any event, X G SX G vX G ßX.

Recall (say from [GJ]) that the points of ßX and the z-ultrafilters on X (i.e.,

ultrafilters in the family of zero-sets of functions in C(X)) are associated one-

to-one by p *-» Sp = {Z|Z is a zero-set and p G Z) (the closure in ßX); that

p G vX iff ?L is closed under countable intersection; that forp £ vX and Z a

zero-set, Z 6 % iff whenever Z = Zf (f G C(X)), then ßf(p) = 0.

If $ is a z-ultrafilter on X, let coS7 = [X - Z\Z G $}. To say that <S is
closed under countable intersection is to say that co § is closed under

countable union, or, as we shall say, a-additive. We introduce the stronger

addition property, characterizing the points of SX.

A family fy of subsets of X will be called discrete if there is a continuous

pseudometric ¿on A" and e > 0 such that if A, B G ty with A ¥= B, then

d(A, B) > e. A family is o-discrete if it is the union of countably many discrete

subfamilies.

Finally, a family § of subsets of X is discretely (or a-discretely, or locally

finitely) additive if U ^D S § whenever ty G § and <% is discrete (or a-discrete,

or locally finite).

2. Theorem. Let p G ßX. The following are equivalent.

(a)p S ÔX;
(b) co It is a-discretely additive;

(c) co tfp is locally finitely additive.

The proof will use the association between continuous pseudometrics d on

X and continuous functions / from X to metric spaces M; given d, <M, p) is

the "metric identification" of (X,d} and / is the natural projection; given

/: X -* (M,p}, set d(x,y) = p(f(x),f(y)). It follows that each d possesses a

continuous pseudometric expression dd over SX; since d(A,B) > e implies

Sd(A, B) > e, a discrete (or a-discrete) family in X is discrete (or a-discrete) in

8X. And, if g: X -+ Y is continuous, and %) is discrete (or a-discrete) in Y, then

g-1^) is discrete (or a-discrete) in X.

Note this also: if ^D is a discrete family of subsets of X, then each point of

X has a neighborhood meeting at most one member of 6D. (If d(D,E) > e for

D ¥" E in ty, then (x\d(x,p) < e/2} is such a neighborhood of p.) Thus, if 6D

consists of cozero sets, say 3) = {coz/D|£> e <$}, then / = 2 {/dI^ G ^j

G CLY), and coz/ = U^.
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Proof of 2. (a) implies (b): Letp G SX. Since SX G vX, co^, is a-additive,

so we must show that co^, is discretely additive. Let 3D C co^,, with <$

discrete. For D G ty, choose fD G C(X) with D = coz/D; thus ZfD G í^and

ßfD(p) = 0. Set / = 2 (/d|ö e 6D}; as noted above, / 6 C(X) and coz/
= UöD. We show that ßfip) = 0, i.e., that coz/ e cofp.

As noted above, [cozSfD\D G <$} is discrete in 8X, so 2 Wd\d e ^l is

well defined and continuous. By uniqueness of extension, 2/j{%>} = §f-

Thus, ßfip) = 8f(p) = 2/j (8fD)(p). This last is 0, since for each D, 8fD(p)

- ßfoip) = 0.
(We have used the fact that for p G vX, and Z a zero-set, in order that

Z e 3¿, it is enough to find/with Zf = Z and /3/(p) = 0.)
(a) implies (c): It is possible to give an argument similar to the above, but

the following is interesting.

Let p E SX, and let <$ = {coz fD\D G <$} be a locally finite subfamily of

cofp. As is well known and easily verified, dix,y) = 2d I//>(•*) ~f&(y)\

defines a continuous pseudometric on X; and d has a continuous pseudometric

extension 8dover 8X. Let Zn = X (1 {x G 8X\8dix,p) < \/n]. Any set closed

in the otZ-topology is a zero-set of SX, and so Z„ is a zero-set of SX. Clearly,

p G Z„, so that ZnG<5p. Since /» S vM, Z m C\nZn G 9p. Evidently, if

q G Z, then 8d(q,p) = 0. Finally, Z C C\DZfD (so nDZ/D G <Sp): for if

o g ZfD,\fDiq)\ > 0; since fl'Cx.j') > |/ß(x) -/ß(>)| for each x,y, it follows

that

8¿(?^) > l%(a) - 6/fl(p)| - \8fDiq)\ > 0.

(c) or (b) implies (a): Essentially the same proof works in either case.

Suppose thatp £ <5A. By 1, choose continuous/: X -* M, M metrizable, with

ßfip) & M. So / fails to extend continuously to p with values in M. Thus,

fixing a metric p on A/, the oscillation of / at p is nonzero, say > e. By A. H.

Stone's Theorem [St] (or see [W]), there is an open cover % of/(A/) refining

the collection of e/4-spheres, which is a-discrete with respect to p (or locally

finite).
Thus f~x(GH) is a-discrete in X, with respect to d(x,y) = p(f(x),f(y)) (or

locally finite). Now % consists of cozero-sets (because any open set in a

metrizable space is cozero), and so does /"'(^l) (because/-'(cozg) =

coz (g °/)). And/oscillates < e/2 on each member of/-1(%).

Evidently, Uf'f6?!) = X & co ^p. We claim that /"'(%) C co <Sp, i.e.,

thatp G X - f~x(U) for each U G %: for if not, and there is 17 € % and a

neighborhood G of p with G n (X -f~x(U)) = 0, then G fl A C f~x(U),
and oscG/ < e/2, a contradiction. Thus co 9p is not a-discretely (or locally

finitely) additive.

Remark. The second half of the proof actually shows this. If X is dense in

Y, and if there is continuous /: X —> M, M metrizable, which fails to extend

to p G Y — X, then there is a family {Za|a G A] of zero-sets (namely, the

family {X -fx(U)\U G %} above) with [X - Za\a G A) a-discrete (or

locally finite), with C\aZa = 0 and p G  C\aZa, the closures taken in Y.

3. Corollary. X is topologically complete iff each z-ultrafilter 'Sfor which co?J

is a-discretely (or locally finitely) additive is of the form [Z\p G Z} for some

unique p G X.
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Proof. X G 91(91) iff ÔX = A\
The following useful proposition from [GJ] results from the association

between z-ultrafilters and points of the epireflections ßX or vX.

4. Proposition. Let X be dense in Y. The following are equivalent.

(a) Each continuous function from X to [0, 1] (respectively, R) extends

continuously over Y.

(h) Y G ßX (respectively, Y G vX).

(c) If [Za\a G A) is a finite (respectively, countable) family of zero-sets of X

with (laZa = 0 then (~)aZa = 0 (the closures in Y).

Analogously, we can derive easily from 2 the following.

5. Corollary. Let X be dense in Y. The following are equivalent.

(a) Each continuous function from X to a metrizable space extends continuously

over Y.

(h) Y G ÔX.

(c) If{Za\a G A) is a family of zero-sets, with {X — Za\a G A) a-discrete (or

locally finite), and if P\aZa = 0, then C\aZa = 0 (the closures in Y).

Proof, (a) implies (b): Assuming (a), continuous functions from X to

metrizable spaces extend over SY. By uniqueness of epireflections, ÔY = 8X

(essentially), so Y C SX (essentially).

(b) implies (c): Assume (b), and let [Za] he a family as in (c), with

C\aZa =£ 0. Thus, for some p G ÔX, p G DaZa, and each Za G <$p. By 2, <»p

is a-discretely or locally finitely additive, so (~\aZa G <5p. Since 9p is a filter,

^aZa ^ 0-
(c) implies (a): See the remark after 2.

Remarks. (1) A proof of 4 is easily constructed by analogy with the above

proof of 5.

(2) As noted in the introduction, the extension properties in 4(a) and 5(a)

imply the stronger extension properties for maps into the epireflective hulls

9l([0,1]) = compact spaces, $\J(R) = realcompact spaces, 91(911) = topologi-

cally complete spaces.

We conclude with a relatively simple proof, based on 2, of the Katëtov-

Shirota Theorem-or more exactly, of a version of the Gillman-Jerison version

of the theorem. (See [K], [S], [GJ].)

Recall that the set S has measurable power if there is a "nontrivial measure

on S", i.e., a countably additive measure p, defined for all subsets of S, taking

values 0 and 1, with p({p}) = 0 for each p G S, and p(S) = 1.

6. Theorem. 8X = vX iff each discrete subset of X has nonmeasurable power.

Proof. What we shall show is that a-additivity of co § implies (a-) discrete

additivity for each z-ultrafilter iff the stated condition holds.

The "if" part is immediate from the following.

7. Lemma. Let Che a z-ultrafilter. If co Wt'S a-additive, then co 'S is "nonmea-

surably" discretely additive.

Proof. Let co 9 he a-additive, let ^ C co if be discrete of nonmeasurable

power. For & G <3), define p.(&) = 1 if U & £ co ÇF; p(6?) = 0 if U & G co f.
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Note that for each & G 9), Uc? is a cozero set because ä is discrete. For

D G 9), u({75}) = 0 because 9) C co 'S. We shall check that u is a measure;

thus /x will be identically 0, u(9)) = 0 and U 9) G co <S.
Let (2), 6?2, . •. be a sequence of disjoint subsets of 9). We shall show that

ßiUA) = 2„ M<U Let AH = U{7) G 6E„}, /Í = U„/l„. If KU„S„) = 0,
then A G co'S.

For each «, An G A, hence /1„ G co "fand u(6?„) = 0. Thus u(U„6?„) = 0

= 2„ /*(#„). Now suppose p(U„S„) = I, i.e., A G co ÍF. By a-additivity,

there is n0 such that /l G co 9\ Let n # n0, then $„ n â„o = 0, /!„ n ^„o

= 0, and (A - ^„) U (A - ^„o) = X G f. Since ? is an ultrafilter, it is

prime, and since X - An¡¡ £ 'S, we have X - An G S, An G co % and u(éE„)

= 0. So 1 = u(Unt?„) = M((£„0) = 2„ Wnl
Conversely, let X contain the discrete set D of measurable power, and let p.

be a nontrivial measure on D. Let 'S be the family of zero-sets Z of X with

¡i(Z n D) = 1. Evidently, 'S is a filter with co 'S a-additive.

We shall show that ?Jis maximal and not discretely additive. For use in both

parts, choose d and e with dip, q) > e for p ^ q in D, and for p G D, set

Cp = {xloXp,.*) < e/4}. Note that Cp is a cozero-set, and {Cp|p G 9)} is

discrete.

?Fis maximal: Let Z0 be a zero-set with Z0 n Z ¥= 0 for each Z Cf. For

each p G D — Z0, choose a zero-set Z^, with p G Zp, Zp n Z0 = 0, and

Z, C Cr Let Cp = coz/, and Zp = Zf^. Then {cozifpgp)\p G D - Z0) is

discrete, and with / = 2 [fpgp\p G D - Z0}, we have Zf = L>{Zp\p G D

-Z0}. Now Z0 n Zf = 0, so that Z/ G f. Since 7) = (Z/ n D) U (Z0
n £>), it follows that u(Z0 n D) = 1, and Z0 G <S.

'S is not discretely additive: Let 9) = {C^lp G D). Evidently, 9D C co ^,

while n((X - U9D) n £>) = u(0) = 0, so that U 9) G co 9^.
Remarks. (1) It is easy to show that each discrete subset of X has

nonmeasurable power iff each locally finite subset of X has nonmeasurable

power. This yields another version of 6.

(2) The proof of 6 given above (including the proof of 2) resembles to some

degree the proof of 15.21 of [GJ]. 7 generalizes 12.3 of [GJ].

(3) All known proofs of theorems close to 6 use the Stone Theorem on a-

discrete refinement. Our use of it is confined to 2, and our proof of 6 proper

consists of fairly simple set-theoretic computations.

(4) [DW] and 2.4 of [T] use locally finite partitions of unity to characterize

topological completeness; the ideas are somewhat similar to those of this

paper.

(5) The referee points out that the space we are labelling SX (after its

inventor Dieudonné [D]) has been labelled 0X in [B] and ¡iX in [M].

(6) The referee points out that Buchwalter [B] has also and earlier obtained

an identification of the points of SX among those of vX: As is well known, the

points p of vX (i.e., the z-ultrafilters íFwith co^ a-additive) correspond one-to-

one with the unitary ring homomorphism h: C(X) —» R. In §4 of [B],

Buchwalter shows that the following conditions on h are equivalent: (a)

h G SX. (b) h\E is continuous for every equicontinuous E G C(X), E having

the topology of simple convergence on X. (c) If [En) is a sequence of

equicontinuous subsets of C(X), then there is x G X such that h(f) = f(x) for

each/G U„En.
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As here 2 implies 6, the above implies a version of the Katëtov-Shirota

Theorem ([B, p. 55]).
Buchwalter's Theorem and our 2 establish that a homomorphism h satisfies

(b) above iff the associated z-ultrafilter ÍF = {Z(/)|/ G ker/t} has coiF a-

discretely additive.

(7) As is well known (e.g., [D]), 8X can be viewed as the topological space

underlying the completion of X equipped with its finest compatible uniformity.

We have chosen to avoid connections with uniformities here, but a later paper

[CH] will treat this thoroughly.
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