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ON THE STRAIGHTNESS OF REDUCED
TEICHMÜLLER SPACE

JUDITH C. WASON

ABSTRACT. Under a natural injection which is shown to be an isometry,

the image of the reduced Teichmüller space 7'*(G) in the open straight

Teichmüller space of the Fuchsian model of G, TQT), is an open straight

subspace.

It is known that, with the Teichmüller metric, the Teichmüller space T(H)

of a nonelementary finitely generated Fuchsian group H of the first kind is an

open straight space in the sense of Busemann [9], [10]. Hence, between any

two distinct points of T(H) there is a unique geodesic locally isometric to R.

This paper considers an extension of this property to T*(G), the reduced

Teichmüller space of a finitely generated nonelementary Fuchsian group G of

the second kind.

Let MX(H) (MX(G)) be the set of Beltrami differentials fi(z)dz/dz on the

upper half plane U satisfying ||/i,|| = ess sup| u(z)| < 1, ju(«(z))«'(z)/«'(z)

= /i(z) for all « G H (g G G).

Extend ¡i(z) to C by ¡i(z) = ¡ü(z), and let w (z) be the unique solution of

the Beltrami differential equation w- = ¡xwz fixing 0,1, and oo. The Teich-

müller space T(H) (T(G)) is the set of equivalence classes [w ] of elements of

MX(H) (MX(G)) where /* — v if and only if w = wv on R. The reduced

Teichmüller space is the set of equivalence classes 9 of elements of MX(G)

where /x £■ v if and only if w^ = wv on A(G), the limit set of G. This is in

turn equivalent to the condition that the induced isomorphisms g —> w^gw~'

and g —> w„gw~' are identical. (Note that for H of the first kind T*(H)
= T(H).)

Since G is a finitely generated Fuchsian group of the second kind, A(G)

C R, and we have t/-H> il(G)^> Q,(G)/G where p is a holomorphic

cover map, 77 is a (possibly ramified) holomorphic cover, Í2(G) is the ordinary

set of G, and Q(G)/G is the double of U/G. Let J: (7—> U be given by

J (z) = - z; the cover p may be chosen to satisfy p(J(z)) = p(z). Fix H by

defining H = {« G PSL(2,R)\p ° « = g ° p for some g E G}.

Let B2(H,U) be the set of quadratic differentials with respect to H on U

satisfying ||<p|| = sup|<|>(z).y2| < 00, and let B'2(H,U) = {4> E B2(H,U)\$(Jz)

= <t>(z)}. Let B2(G,Ü) be those quadratic differentials on Í2(G) which are real

-
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on fi(G) n R and satisfy ||^|| = sup|(t//- X   2)(z)| < oo, where X is the Poin-

caré metric induced by rr ° p.

Finally, let M[(H) = {r¡ G M,(77)|t/(7(z)) = t/(z)}; this is equivalent to

the condition that w commutes with J. Via the isometries ¡i(z) -» p • ¡i(z)

= /x(P(z))(pX7)/pXz)) and x^(z) -» (* X p)(z) = ^(p(z))(p'(z))2, it can be

easily demonstrated that MX(G) is isomorphic to M[(H), and 7?2(C7, ß) is

isomorphic to 7^(77, U). Earle has shown [7], [8] that the former induces the

map 9^ -> [Wp.p] which is a real analytic injection of T#(G) into T(77) with

image T/77) = {[w-] G T(H)\i) G M[(H) for some r; ~ rj}.

1. The straightness of T'(H). We wish to study further the structure of

T'(H). It is clear that if ¡x G [w¡/\ G T'(H), w^ commutes with /onR (i.e., is

odd).

Lemma 1. The unique extremal element w in each equivalence class [w-] G

T(H) with odd boundary values is symmetric (w ° J(z) = J ° w^(z) on U),

and T'(H) = {[wj G T(H)\w^ is odd on R}.

Proof. Suppose w = w^ is not symmetric, and set f(z) = (J ° w ° J)(z).

Then the complex dilatation tj, of /is (rj ° J)(z). Since / is a

homeomorphism, ||t)|| = ||t) ° 7||. Since w is odd on R, f(x) = w^x), and

/— w . Since IIt/,11 = ||r/||, by Teichmiiller's theorem for T(H), J ° wn ° J = /

= h^, and so wv commutes with J on U. Hence r/ G M[(H), and equivalence

classes of T(77) with odd boundary values are contained in T'(H). The other

inclusion is obvious.    □

Let wn be the extremal element of [w-] G T'(H). Since M(G) is isomorphic

to M'(H), wv = wp.a for some a G MX(G). Now a must be uniquely ex-

tremal, for if ß G MX(G), a^ ß, and ||/?|| <||a||, then p • ß ~ p ■ a with

\\p ■ ß\\ <||p • a|| = ||t)||, which is a contradiction. Hence

Proposition 1. Each equivalence class 0- of T#(G) contains a unique

extremal element w ; w     is the extremal element of [w    ] G T'(H).

Since we now have an extremal element in each class, the Teichmüller

metric may be defined on T*(G).

The set of fixed points of an involutoric isometry of an open straight space

is a nonempty open straight space [6]. We show T'(H) is such a set.

Lemma 2. Let h G 77. Then h ° J = J ° h0 for some h0 G 77.

Proof. Let h(z) = (az + b)/(cz + d) G PSL(2, R). Then i»;(z)

= J ° m(z) where m(z) = (az - b)/(-cz + d) and m G PSL(2, R). Since

p ° J = p, by the definition of 77, p ° m(z) = g ° p(z) for some g G G. Hence

m =  h0 G  77,   and   consequently   JHJ~X =  77.   Note   also   that

hz°j(z)=(h^JT).   □
Let y G M,(77). Then y ° J G MX(H). As in the proof of Lemma 1, if wy

has complex dilatation y, the map/(z) = (J ° wy ° J)(z) has complex dilata-

tion y ° J. If w = wy on R, w- o = w ° 7 ° w ° 7 = w ° 7 ° w ° 7 = w- o

on R, where m G PSL(2, R) is the normalizer. Thus the map 7 induces the

well-defined map 7* = T(77) ^ T(77) by [wy] -^ [w- m ]. 7* is clearly an

involution since (y°7)°7=y, and it is also an isometry for
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y o J — Tj o J

1   -   (iff)   o J 1   -   T)Y
° J  =

1 T/Y

°J.

Since y is a homeomorphism, the essential supremums over U ave equal.

Hence /* is (at most) distance decreasing. However, since (J*)2 is the

identity, J must be an isometry.

Proposition 2. T'(H) is an open straight space.

Proof. We show that T'(H) is the set of fixed points of the isometric

involution J* of T(H).

The equivalence class [w-] E T'(H) if and only if it contains an element w

whose dilatation satisfies tj ° J = rj, or equivalently, rj ° J = rj. Each point of

T'(H) is thus clearly fixed by J*.

Suppose conversely that /*([h;^]) = [w-]. Then y ° J = y' ~ y. In particu-

lar, [w-] contains a Teichmüller mapping wy, and as such, w has the strictly

smallest dilatation. But ||y|| = j|y -J\\ which implies [w-] = [wy] E T'(H). Thus

T'(H) is the fixed point set of J*.    □

2. The straightness of T#(G). We wish now to transfer the straight space

structure of T'(H) to T*(G). The map T*(G) -* T'(//) given by ^ -> [wp.J

is one-to-one and onto. Suppose w , wp.„ belong to [wp.J, [w .] respectively.

Set k(wp.fi ° w~x) = dilatation of w     ° w~x. Then

^K/1°wp:„1)=||(Ju-,)/(i-^)||

since p is onto. Thus

d*(9a,9b)>d([wp.a],[wp.b]),

since the isomorphism 9   , 9p.b may be induced by maps which are odd on R

but do not commute with / on U. Consider

KJ

Suppose k(w^ o Wpi i) < ^(w^ ,') for all p ■ ¡x, p ■ v E M[(H) inducing

9   , 9p.b respectively, where either it, or vx G M[(H).

Replace wv¡ by w¿ ~ w, where w-| commutes with J. By Lemma 1, since

wi¡ ° w»~[ 's °dd on R we may replace it by an equivalent map g which

satisfies k(g) < k(w)l ° w~[) and g ° J = J ° g on U.

The diagram is then modified to

r       i *

S-Wßj
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where g ° if- ~ w and g ° w(¡] is symmetric. Then k((g ° w^) ° w^1)

= /c(g) < k(w • w„_1), a contradiction. The distance ¿7 will therefore

be determined by Beltrami differentials in M[(H), and the inequality is

actually equality. The map T*(G)—> T'(H) (and its inverse) is an isometry,

and T*(G) is an open straight space. We have proved

Theorem. Let G be a normalized finitely generated Fuchsian group. Then

T#(G) is an open straight space.

3. A second characterization of T'(H). The equivalence class [w-] G T(H)

is contained in T'(H) if and only if 9- is induced by some wv satisfying

w,, ° 7 = 7 ° w„. Let <¡>(z)dz2 G B&H^U). The ray in T_(77) through [wj

determined by <i> lies entirely in T'(H), for set ija(z) = a<f>(z)/|<J>(z)|, 0 < a

< 1. Then Va(Jz) = a$(Jz)/\<p(Jz)\ = a<f>(z)/\^(z)\ = rja(z) and Va G

M¡(H„) for 0 < a < 1. Hence w„ commutes with 7, w„  ° w„ commutes with
' v       U 'ta Ua *(

7, and [w^ ° wv] G T'(H).

On the other hand, suppose [wv], [wy] G T'(H). Then wv, wy are odd

one-to-one maps of R onto itself. Since [w^], [wy] are also in 7(77), they lie on

a unique straight line L in T(H). In particular, they lie on the ray R of L

determined by <¡>(z)dz2, <f> G B2(HV, U) where k0<p\z)/\<j>(z)\, 0 < k0 < 1, is

the dilatation of the (unique, extremal) Teichmüller map from [wj to [wy].

We wish to show <p(z)dz2 G B2(HV, U), for then this ray would lie in T'(H).

The same argument beginning with the inverse map [wy] —» [wj will show that

all of L lies in 7X77).
The points of 7? are determined by maps wk where

(wk)£(z) = k 0^ (wk)z(z),       0<k<\,4>G 5,(77,,, U).

We assume wv determines 6V(H), and wk¡¡ determines 0Y(77) = 9k<¡ ° 9V(H).

ey(mx-—-AC»)

Now wk  ° wv and wy determine the same point in T (77), hence they agree

on R. Thus

and wk¡¡ is odd on R. Since wk<¡ is uniquely extremal, by Lemma 1 it must be

symmetric with respect to 7.

For a symmetric w, (vv? ° 7) = RL, and (vv¿. ° 7) = vv-. For w = wA , if

w-(z) - k0<t>(z)wz(z)/\<t>(z)\, then

(i°7)(z) (*° ■/)(*)

<* ° y)(2) = *° |(^7)(z)[ ^ ' '><*><    "«*> » *« |fr.,)(g)| *>«

and consequently,
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(*°-Q(*)        fa)
\(4>°J)(z)\   "  fi(z)\  '

Except for isolated zeros of <j>, the function (cf> ° J)(z)/<j>(z) = |(<f> ° y)(z)/<i>(z)|

is conformai with constant zero imaginary part, and hence is constant. Thus

(<í> » J)(z) = C(f>(z) for some c G R, c > 0. On the y axis, J (y) = y, and so

4>(y) = c<t>(y). Hence c * 1, «p ° / - $, and <f>(z)dz2 G B2(HV U). We have

proved

Proposition 3. The straight line connecting two points of T'(H) lies in

T'(H), and is determined by symmetric quadratic differentials (</> ° J = <#>).

T'(H) is a metric space when the Teichmüller metric is restricted to it. Let

[9n(H)} be a bounded sequence of points of T'(H). Since [9n(H)} c T(H),

it must contain a subsequence converging to 9(H) G T(H). But 9n(H)

—* 9(H) if and only if the sequence of boundary values {h>„|r} —> w\R. By

Lemma 1, T'(H) is the set of equivalence classes of T(H) with odd boundary

values. Thus [w] = 9(H) must also be in T'(H), and T'(H) is finitely

compact. The unique straight line in T(H) connecting two points of T'(H)

lies in T'(H); a second geodesic connecting two points of T'(H) would also

be one for T(H), contradicting the uniqueness there. We have again proved

Proposition 2'. T'(H) is an open straight space.

Proposition 3 also allows us to complete the proof of Teichmüller's theorem

for T*(G).

Proposition 4. The extremal element of 9  is a Teichmüller mapping.

Proof. Let w be the unique extremal element of 9 G T#(G). Then

p ■ ¡i G M[(H) is by Proposition 1, the dilatation of the unique extremal

element of [w ], which is symmetric with respect to J. By Teichmüller's

theorem for T(H), (p ■ ¡x)(z) = k$(z) / \$(z)\ for some k, 0 < k < 1, <f> G

B2(H, U). But <p determines a ray between two points of T'(H) (from

9id(H) = (H) to 0P.M(#)) and therefore belongs to B2(H, U) by Proposition

3. But <p = ip X p where \p G B2(G,Q), and

m (*Xp)Lr) /     £  \

^^=^ = AKixp)(z)i =p'[kw\r

which implies that ju = /a///|>//|. Since \p E B2(G, S2), w^ is a Teichmüller

mapping, and we have completed the proof of Teichmüller's theorem for

finitely generated normalized Fuchsian groups of the second kind.
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