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HOMOLOGY OF COMPLEX PROJECTIVE
HYPERSURFACES WITH ISOLATED

SINGULARITIES

lJOHN L. MILLER

Abstract. We use information concerning the homology of links and

Milnor fibers at each singularity of a hypersurface V, of degree d in CPn+l

with only isolated singularities, to determine PV homology except for the

question of torsion in Hn(f;Z).

Consider a projective hypersurface V of degree d in CP"+X having only

isolated singularities P = [px,... ,pm). Results of Howard [3] and Andreotti

and Frankel [1] imply that we may regard V as the closure of an affine

hypersurface V = f~x(0) G Cn+X where /: C"+x -* C is a polynomial of

degree d such that

(1) P G V
(2) V is nowhere tangent to the hyperplane at infinity:

/70 = {[z0:z1: ••• :z„+1] G CP"+X \z0 = 0}.

Given this situation we note that for sufficiently small e > 0 the projective

completion Vt of the affine hypersurface Vt = f~x(e) must be nonsingular.

Furthermore Ve n H0 = V fl H0. By pushing along the vector field obtained

by integrating -gradc/= <-3//9Z,,...,-3//3Z„+1> in C"+1 we obtain a

map <3>: Ve ~* V and since V is transverse to H0 this extends to<^: Vt -* V by

defining <}>| Vt n H0 to be the identity. For i = I, ..., m and 8 > 0, let Ss, be

a (2n + l)-sphere of radius 8 centered at p¡ G C , also Ks¡ = Ss¡ n V.

Choose Si > 0 small enough so that for 8 < 8X, we get a Milnor fibration

Ft ̂  S6J\K^ -** Sx. Here 9,(Z) = f(z)/\f(z)\. Let 60 < 5, and Z>,;0 (/),-,) be
the open 2«-disk with radius 80 (8X ), respectively, around p¡.

Theorem 1. Letting Dx = LÇLiAl and Do = U^iA.o- <í>\(VSDo) « "°-
ropi'c ro a diffeomorphism (Í%\D0) ~ (V\D0) for sufficiently small e > 0.

Proof. Choose e small enough so that

(1) J£ n Z>,o ** F¡ the Milnor fiber atp,; see [6, Lemma 5.11].

(2)/_1(y) is nonsingular for 0 < |y| < e.

(3) <>_1[p;] C Vc n £)/>0 thus insuring that <p is 1-1 on ^\£>0.

The fact that/_1(y) is transverse to SSi for 0 < |y| < e and 80 < 8 < 5i
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means that the component of —gradc/ which is tangent to Ss is nonvanishing.

Hence we may obtain a new vector field by using a partition of unity in the

collar DX\D0 to smoothly patch -gradc/ in f~x[0,e]\Dx with the tangential

component of -gradc/ on A^. Pushing along this vector field yields the

diffeomorphism V£\D0 « V\D0. By smoothly altering the partition of unity,

one shows this diffeomorphism to be isotopic to <i>: l£\7J>0 -»■ V\P. Taking

projective completions and defining the levels of the isotopy to be the identity

on Ve n 770 completes the theorem.

Corollary 2. Letting W denote a nonsingular hypersurface of degree d in

CPn+x we have the following cohomology ladder (Z-coejficients).

-► Hq~l(K) £* Hq(V) -U Hq(V\D) ® Hq(P) -+Hq(K) -* • • ■

*a i>q\®r

->Hq~x(K)^ Hq(W) -U Hq(W\D)9 Hq(F) -»- Hq(K) -> • • •

Here F is the disjoint union of the Milnor fibers at each point of the singular locus

P = {Px,... ,pj, K = 8F, and t^| : H"(?\D) -* Hq(W\D) is an isomor-
phism for all q.

Proof. Consider the Mayer-Vietoris sequence resulting from the following

adjunctions:

(i) V = (V\D0) UKo Cones on Kifi;

(ii) W = Vt « (%\Do) U^ F, where F = \J F¡ and 7v = D0 n Vt and is
diffeomorphic to the closed Milnor fiber at p¡.

The vertical maps are induced by <f> and since Hq(P) = 0 for q > 1, r is

the zero map; for a = 0, t is an isomorphism. \j/q\ is an isomorphism by

Theorem 1.

Theorem 3. If V is a projective hypersurface  C CPn+x of degree d with

singular locus P = [px,... ,pm), then

0)

(ii) Free Hn+x(V;Z) has rank

q even ¥= n, n + 1,

q odd ¥= n, n + 1,
q < 2n;

l+ZA,-i(*/),       «odd,

m

2 ß„-\(Ki),       neuen;
\   i

(iii)  77"(K;Z)  is free with  rank ßH(W) - 2***/ + 2f ^«-l(^i)  where
ß„(W) = rank H"(W), and is well known to equal

Id~x(d-\)[(d-\) n+\

d-'Kd-l) n+2
l] + 2,

1],        n odd,

n even,
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andfij = H"(F¡). Pn^(K¡) denotes the reduced rank ofH"~x(K¡).
(iv) 8\ : Tor H"(K; Z) -* Tor Hn+l(V; Z) is epic.

Proof. Statements (i), (ii), and (iii) follow from the facts that K is an

(n - l)-connected (2n — l)-manifold, Fis a 2/j-manifold with dF = K and is

of the same homotopy type as a wedge of 5""s, and the cohomology ladder of

Corollary 2. Suppose x G H"(V;Z) and mx = 0. Hence m ■ \p„(x) = 0 and,

since H"(W;Z) is free, v//„(x) = 0. Thus7 • xp„(x) = (»/-J© t) • j(x) = 0. But

H"(P;Z) = 0andt//„| is an isomorphism. Hence j(x) = 0 and By

G Hq~x(K) such that 8(y) = x by exactness.
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