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THE FINAL VALUE PROBLEM FOR SOBOLEV
EQUATIONS

JOHN LAGNESE

ABSTRACT. Let 4 and B be m-accretive linear operators in a complex
Hilbert space H with D(4) C D(B). The method of quasi-reversibility is
used to obtain a solution to the Sobolev equation (d/df)[(I + B)u(?)] + Au(r)
= 0,0 < r < 1, which approximates a specified final value (1) = f. In
general, when D(4) C D(B), it is not possible to find a solution which
achieves exactly the final value u(1) = f.

1. Let A and B be a linear m-accretive operators in a complex Hilbert space
H with D(4) C D(B). The purpose of the present note is to show how the
method of quasi-reversibility [4] can be used to treat the final value problem

(L.1) Lu = (@/d)[(I + B)u()] + Au(®) =0, 0< <1,
(12) 1) = f.

Since this problem is not well posed, in general, when D(4) C D(B), one may
consider instead the problem of approximation of the final value, that is, given
p > 0, find, if possible, a solution u, of (1.1) such that ||lu,(1) — f|| < p. Quasi-
reversibility is a constructive method of determining such a solution.

In this method, one approximates the operator L by a nearby operator L,
such that the final value problem for L, is well posed (although the initial
value problem may be ill posed; hence the term quasi-reversibility). The value
v(0) of the solution of L,v = 0, v(1) = f, is then used as an initial value in
solving (1.1).

Of course, various approximating operators L, may be used. Here we
approximate (1.1) by

(13)  Lyv = (@/d)[(I + B+ eAw(®)] + 4v(t) = 0, & = &(p).

For this choice of L, both the initial and final value problems are well posed.
Furthermore, this type of approximation is stable in a sense to be made
precise.

Our choice of (1.3) is suggested by the results of [6] where such an
approximation procedure is used to treat the special case B = 0. In fact, we
shall show how the results of [6] can be used to obtain estimates in the general
case as well.

An additional condition imposed on the operators 4 and B is a sector
condition:
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(1.4) |arg (Ax, (I + B)x)| < 7/4, Vx € D(4).

In §3 we shall give examples of how operators may be constructed which
satisfy (1.5). When B = 0, (1.4) is equivalent to a hypothesis that the
semigroup generated by —A4 has an analytic extension into the sector
larg z| < m/4 of the complex plane.

2. We first consider the case B = 0. A4 is assumed to be m-accretive, that is,
Re(A4x,x) > 0 for all x € D(4) and Rg (I + A) = H. By a solution of

.1 Lu = dufdt + Au =0

on [0, 1] is meant a function u € C([0,1]; H) N C’((0, 1); H) such that for all
tin (0,1), u(t) € D(A4) and (2.1) is satisfied.

Let S(#), t > 0, be the continuous semigroup of contractions on H generat-
ed by —4 and, for each ¢ > 0, let S,(¢), —o0 < 7 < 400, be the continuous
group of bounded operators on H generated by the bounded, dissipative
operator —A4, = ¢~ !((/ + eA)™' —I). Let f € H and set v(r) = S.(t— 1.
Then v satisfies dv/dt + A(I + eA)” v = 0 and so is “formally” (that is, if
v € D(A4) and the interchange of operations is justified) a solution of the
problem

(2:2) d/an[(1 + edp(@)] + Av(?)) = 0,: < 1, v(l) = f.

Let u,(¢) be the solution on [0, 1] of (2.1) satisfying the initial condition
u,(0) = S,(—1)f. Then u,(r) = S(#)S,(—1)f and one expects u,(1) to approx-
imate f in some sense. The following results are proved in [6]: Let E,(¢)
= S(1)S.(~1), t > 0, and assume A is m-sectorial with semiangle 7/4 (that is,
(1.4) holds with B = 0). Then

(I) E,(#), t > 0, is a contraction semigroup on H and E,(t)f — fase - 0,
for each f € H, uniformly on bounded intervals of ¢. Furthermore

IE.0)f — fll < tllAf — A4fll,  f € DA),
IE.()f — £l < erll4*f1l, f € D(A).

(II) For each f € H, (2.1) has at most one solution on [0, 1] satisfying
u(1) = f. Suppose f = S(1)¢ for some (necessarily unique) ¢ € H. Then the
final value problem has a solution u(¢f) = S()¢ on[0,1]and form =0, 1, ...,

4™ (r) — @) < (M) E()E—8&ll, e>0,0<1< 1,
4™ (1) — u™ @) < M/t — 8)]" | 42S(B)E],
£>00<8<1,8<< 1,

where M is a positive constant.

Now we turn to the general case B # 0. A and B are assumed m-accretive
with D(4) C D(B). By a solution of (1.1) on [0,1] is meant a function
u: [0,1] > D(B) such that (I + B)u € C([0,1); H) N C'((0,1); H) and for
all ¢ in (0,T), u(r) € D(4) and (1.1) is satisfied. Note that the definition
requires that (1) € D(B).
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Let B denote the restriction of B to D(4) and set
A=A+ B)"", DA) =Rg( + B).

One verifies that a function u is a solution of (1.1) on [0,1] if and only if
# = (I + B)u is a solution on [0, 1] of

(2.3) di/dt + Aid = 0.

If Re(dx,(I + B)x) > 0, Vx € D(A4), then A is accretive and, moreover,
m-accretive ([5]; c . [3]). If the more restrictive condition (1.4) is satisfied, then
A is m-sectorial with semiangle =/4.

Assume that (1.4) holds and let S(t) t > 0, be the analytic semigroup of
contractions on H generated by —A4, and S.(t), —0 <t < t+ o0, be the
group of bounded operators on H generated by -4, =+ ed) ' - 1.
If f € D(B), the function () = S,(t — 1)(I + B) f is formally a solution on
[0,1] of (2.2) with 4 replaced by /T, and 7 satisfies (1) = (I + B)f. Hence

v() = (I + B) 'S¢ — V(I + B)f
is formally a solution on [0, 1] of
(d/d)[(I + B + eAw()] + Av(t) = 0

such that v(1) = f. Thus we define u,(f) to be the solution of (1.1) on [0, 1]
satisfying the initial condition u,(0) = (I + B)~ IS, (—=1)(I + B)f, that is

u(1) = (I + B)"'S(S,(-1){ + B)f.

THEOREM 2.1. Let A and B be m-accretive operators with D(A) C D(B)
satisfying (1.4) and suppose f € D(B). Then u/(1) > fase — 0, and the
approximation procedure is stable in the sense that

Iz + BYu, (DIl < I + B)SIl for all ¢ > 0.

Furthermore,

”ue(l) —f" < e”";eAf“’ f € D(A)’
lu, (1) = £l < eld4fll,  f € D(AA).

ProOF. These results follow from (I) above as applied to (2.3). For example,
if f € D(A) we have, since B is accretive,

[l (1) = fIl < (I + B)(w (1) = ) = IS(M)S.(-1){UI + B)f — (I + B)fll
< AU + B)f = A, + B)f| = lAf — (I + eA) ™" 4f]
= el Afll.

Similarly, we deduce the following from (II):

THEOREM 2.2. With the hypotheses of Theorem 2.1, (1.1) has at most one
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solution on [0, 1] satisfying u(1) = f. Suppose f = (I + BY 'S(1)(1 + B)¢ for
some (necessarily unique) ¢ € D(B). Then the final value problem has a solution
u() on [0,1] and form = 0, 1, ...,

lufm () = u™ @I < (M/)™IE.(1)U + B — (I + B)El,
e>0,0<1 <1,
4™ () — «™ @) < [M/(t — ™12 SE)I + B,
e>0,0<6< L8],
where E,(t) = $(£)S,(—1) and M is a positive constant.

Proor. The function #(¢). = S()( + B)¢ is a solutlon of (2.3) on [0,1]
satisfying #(1) = (I + B)f; hence u(f) = (I + B) 'a(s) is a solution of (1.1),
(1.2) on [0, 1]. Since S(¢) is an analytic semigroup, # € C®((0, 1]; H), hence
u € C*((0,1); D(B)) where D(B) is normed w1th its graph norm. It follows
easily that the strong H-denvatlves, u™ (1), all belong to D(B) and
(I + B)u™ (1) = (I + B)u(z))™. Hence,

™ @) — u™ @ < T+ B)Y@™ (@) — ™ @) = 12 () — a™(@)l.
The estimates therefore follow from (II) above.

3. In this section we shall show how m-accretive operators A and B
satisfying the sector condition (1.4) may be constructed.

Let C be a selfadjoint operator and E(A), —c0 < A < +00, be the corre-
sponding resolution of the identity. A spectral measure E is then determined
by setting E((A;,A;]) = E(\;) — E(A;). Let f(A) and g(A) be complex valued
Baire functions defined and finite E-almost everywhere on the real line (that
is, except at most on a set of measure zero with respect to the spectral measure
E). One may then define operators 4 and B by setting

a=[" JOVE@), B=[" sMWE@N

with

o) = {x: [ FOPE@x) < ),

o(8) = {x [ 1sWPE@)x0) < .

THEOREM 3.1. Assume the following hold for all \ in the spectrum of C:

(i) Ref(A) = 0, Reg(A) = 0,

Then A and B are m-accretive operators satisfying the sector condition (1.4) for
x € D(4) N D(B).

PrOOF. We need only apply the operational calculus of selfadjoint opera-
tors [1, Chapter XII]. Since (E(dA)x, x) determines a positive measure,

Re(dx,x) = [ Z Re fA)(E(@N)x,x), x € D(A),
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is accretive if Re f(A) > 0. In addition, 4 is closed with dense domain and
Re(4*x,x) = f_ 0‘: Re fA)(E(dN)x,x), x € D(A*).

Thus both 4 and its adjoint are accretive operators, and this is sufficient to
conclude that A4 is m-accretive. Similary for B.
We also have, for x € D(4) N D(B),

(Ax, (1 + B)x) = [ fO)(1 + ZQNE@N)x, x).
Thus |arg(4x, (I + B)x)| < #/4 if

larg (FQ)(1 + gN))| = larg fQ) — arg(1 + gN))| < 7/4.
>

Of course, one also has D(4) C D(B) if, for example, | f(A)| > |g(A)| on the
spectrum of C.

The operators 4 and B just constructed are known to be normal operators.
Other types of m-accretive operators which satisfy (1.4) may be constructed
from fractional powers of an m-accretive operator C as follows: Let 0 < «
< 1 and C* denote the indicated fractional power of C; if x € D(C) then

Cox = M[” N-2(C + A Cxd.

The following properties of C are well known (see [2], [7]): (1) C* is m-
sectorial with semlangle ma/2. (2) D(CB) c D(C?) if a < B. (3) C**Bx
= C%Chx)if x € D(C?), a + B < 1.(4) C* commutes with every bounded
operator that commutes with C.
Let M and N be positive integers and {a,: 1 < n < N} and {B,: 1 < n
< M} be real numbers such that ay > By, and

@3.1) 0€y<ay<---<ay<,
(3.2) 0<B <P < <By<L
Set

N

(33) A= 21 a,C%, D(4) = D(C**), Va, >0,
n=
M

(3.4) B= 21 b,Ch, D(B) = D(CPv), Vb, >0
n=

A and B are sectorial operators with respective semiangles way/2 and
7By/2, D(4) C D(B) and for x € D(A),

(4x,(I + B)x) = 3 a,(1 + b,,)(C*x, Chnx).

If x € D(C?), then (C*x, CPx) belongs to a sector |arg z| < (7/2)|a, — By
as can be seen by writing, for example,

(Cox,CPmx) = (CoBmCBmx, CPrx), a, > Bp-
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Thus if x € D(C?),
(3.5) larg(4x,(I + B)x)| < 76/2

where § = max,, , |a, — B,,-

Suppose x € D(4) and set x, = k*(C + k) %x. Then X, € D(C?), x;
- x and for 0 < a < ay, C%x; = k2(C + k)™2C%x — C%x as k — .
Thus Ax, — Ax, Bx; — Bx and therefore (3.5) holds for each x € D(4). One
also sees in the same way that (a, C*"x,a,, C*x) lies in the right-half of the
complex plane. Since a, C* and a,, C*" are m-accretive, it follows from [5]
that the same is true for their sum. A simple induction argument then shows
that 4 and B are m-accretive. We have proved

THEOREM 3.2. Suppose {a,}, { B,} satisfy (3.1), (3.2),
ay > By and max,,la, — B,| < 3.

Then A and B, defined by (3.3), (3.4) are m-accretive operators which satisfy (1.4).
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