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Abstract. Let A and B be m-accretive linear operators in a complex

Hubert space H with D{A) C D(B). The method of quasi-reversibility is

used to obtain a solution to the Sobolev equation (d/dt)[(I + B)u(t)] + Au(t)

= 0, 0 < l < 1, which approximates a specified final value u(\) = f. In

general, when D(A) C D(B), it is not possible to find a solution which

achieves exactly the final value w(l) = /.

1. Let A and Bhe a linear m-accretive operators in a complex Hilbert space

H with D(A) G D(B). The purpose of the present note is to show how the

method of quasi-reversibility [4] can be used to treat the final value problem

(1.1) Lu = (d/dt)[(I + B)u(t)] + Au(t) = 0,       0 < t < 1,

(1.2) «(1)=/.

Since this problem is not well posed, in general, when D(A) G D(B), one may

consider instead the problem of approximation of the final value, that is, given

p > 0, find, if possible, a solution up of (1.1) such that ||wp(l) — /|| < p. Quasi-

reversibility is a constructive method of determining such a solution.

In this method, one approximates the operator L by a nearby operator Lp

such that the final value problem for Lp is well posed (although the initial

value problem may be ill posed; hence the term quasi-reversibility). The value

v(0) of the solution of Lpv = 0, v(1) = /, is then used as an initial value in

solving (1.1).

Of course, various approximating operators Lp may be used. Here we

approximate (1.1) by

(1.3) Lpv = (d/dt)[(I + B + eA)v(t)] + Av(t) = 0,    e = e(p).

For this choice of L both the initial and final value problems are well posed.

Furthermore, this type of approximation is stable in a sense to be made

precise.

Our choice of (1.3) is suggested by the results of [6] where such an

approximation procedure is used to treat the special case B = 0. In fact, we

shall show how the results of [6] can be used to obtain estimates in the general

case as well.

An additional condition imposed on the operators A and B is a sector

condition:
-
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(1.4) |arg(^A:,(7 + 7i)x)| < jt/4,    Vjc G DÍA).

In §3 we shall give examples of how operators may be constructed which

satisfy (1.5). When B = 0, (1.4) is equivalent to a hypothesis that the

semigroup generated by —A has an analytic extension into the sector

|arg z\ < 7r/4 of the complex plane.

2. We first consider the case B = 0. A is assumed to be rw-accretive, that is,

Re(Ax,x) > 0 for all x G D(A) and Rg (I + A) = 77. By a solution of

(2.1) Lu = du/dt + Au = 0

on [0,1] is meant a function u G C([0,1] ; 77) n C'((0,1); 77) such that for all

t in (0,1), «(f) G D(A) and (2.1) is satisfied.

Let S(t), t > 0, be the continuous semigroup of contractions on 77 generat-

ed by —A and, for each e > 0, let Se(t), -oo < r < +oo, be the continuous

group of bounded operators on 77 generated by the bounded, dissipative

operator -A£ = e_1((7 + eA)~X - 7). Let / G 77 and set v(t) = Se(t - 1)/.

Then v satisfies dv/dt + A(I + eA)~ v = 0 and so is "formally" (that is, if

v G D(A) and the interchange of operations is justified) a solution of the

problem

(2.2) (d/dt)[(\ + eA)v(t)] + Av(t) = 0, t < 1,    v(\) = /.

Let ue(t) be the solution on [0,1] of (2.1) satisfying the initial condition

wE(0) = Se(-l)f Then ue(t) = S(t)Se(-\)f and one expects ue(\) to approx-

imate / in some sense. The following results are proved in [6]: Let Ee(t)

= S(t)Se(—t), t > 0, and assume A is m-sectorial with semiangle it/4 (that is,

(1.4) holds with B = 0). Then
(I) Ee(t), t > 0, is a contraction semigroup on 77 and F£(f)/—>/as e -» 0+

for each / G 77, uniformly on bounded intervals of t. Furthermore

\\Ee(t)f-f\\ < t\\Af'-AJ\\,       /G D(A),

\\Ee(t)f-f\\ <et\\A2f\\, fGD(A2).

(II) For each / G 77, (2.1) has at most one solution on [0,1] satisfying

w(l) = /. Suppose/ = 5(1)| for some (necessarily unique) £ G 77. Then the

final value problem has a solution u(t) = S(t)¿, on [0,1] and for m = 0, 1, ...,

||«M(0 - ifi*% < (M/t)m\\Ee(l)í - HI,       e > 0, 0 < t < 1,

11^(0 -uM(m<e[M/(t-8)r\\A2Sm\,

e >0, 0 < Ô < 1,0 < / < 1,

where M is a positive constant.

Now we turn to the general case B =£ 0. A and B are assumed w-accretive

with D(A) G D(B). By a solution of (1.1) on [0,1] is meant a function

u: [0,1] -+ D(B) such that (7 + B)u G C([0,1];77) n C'((0,1);77) and for
all t in (0, T), u(t) G D(A) and (1.1) is satisfied. Note that the definition

requires that u(\) G D(B).
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Let B denote the restriction of B to D(A) and set

Ä = A(I + B)~X,    D(Ä) = Rg (/ + B).

One verifies that a function u is a solution of (1.1) on [0,1] if and only if

ü = (I + B)u is a solution on [0,1] of

(2.3) dü/dt + Äü = 0.

If Re(Ax,(I + B)x) > 0, Vx G D(A), then Ä is accretive and, moreover,

«t-accretive ([5]; c f. [3]). If the more restrictive condition (1.4) is satisfied, then

Ä is w-sectorial with semiangle 77/4.

Assume that (1.4) holds and let S(t), t > 0, be the analytic semigroup of

contractions on H generated by -Ä, and Se(t), -00 < / < / + 00, be the

group of bounded operators on H generated by — Ät = e-1((^ + £Â)~ —í).

If / G D(B), the function v(t) = Se(t - l)(I + B)fis formally a solution on

[0,1] of (2.2) with A replaced by Ä, and v satisfies v(l) = (/ + B)f. Hence

v(t) = (I + B)~xSe(t - l)(I + B)f

is formally a solution on [0,1 ] of

(d/dt)[(I + B + eA)v(t)] + Av(t) = 0

such that v(l) = f. Thus we define ut(t) to be the solution of (1.1) on [0,1]

satisfying the initial condition ue(0) = (I + B)~xSe(-l)(I + B)f, that is

ue(t) = (I + B)~X S(t)Se(-l)(I + B)f.

Theorem 2.1. Let A and B be m-accretive operators with D(A) G D(B)

satisfying (1.4) and suppose fG D(B). Then ue(l) —>fas e —> 0+ and the

approximation procedure is stable in the sense that

\\(I + B)ue(l)\\ < ||(/ + 5)/||   'for all e > 0.

Furthermore,

lk(l)-/|| <e\\ÄeAf\\,       fGD(A),

lk(l)-/||<e||¿4/||,        fGD(ÄA).

Proof. These results follow from (I) above as applied to (2.3). For example,

if/ G D(A) we have, since B is accretive,

IMD-/II < \\(I+B)(ue(l)-f)\\ = \\S(l)Se(-l)(I + B)f-(I+B)f\\

< \\Ä(I + B)f-Ät(I + B)f\\ = \\Af- (I + eÄ)-XAf\\

= e\\ÄtAf\\.

Similarly, we deduce the following from (II):

Theorem 2.2. With the hypotheses of Theorem 2.1, (1.1) has at most one
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solution on [0,1] satisfying u(l) = f. Suppose f = (I + B)~x S(l)(I + B)£ for
some (necessarily unique) £ G D(B). Then the final value problem has a solution

u(t) on [0,1] and for m = 0, 1, ...,

\\u<ï"\t) - >>(/)» < (M/t)m\\Ëe(l)(I + B)ï - (I + B)Z\\,

e > 0, 0 < t < 1,

||«W(0 - «W(/)[| < [M/(t - 5)]m||i25(ô)(7 + BM,

e > 0, 0 < 5 < 1, 8 < t < 1,

where Êc(t) = S(t)Se(—t) and M is a positive constant.

Proof. The function ü(t) = S(t)(I + B)£ is a solution of (2.3) on [0,1]

satisfying ü(\) = (I + B)f; hence u(t) = (I + B)~x£i(t) is a solution of (1.1),

(1.2) on [0,1]. Since S(t) is an analytic semigroup, ü G Cx((0,1]; 77), hence

u G C°°((0,1]; D(B)) where D(B) is normed with its graph norm. It follows

easily that the strong 77-derivatives, i¿m\t), all belong to D(B) and

(7 + B)u^(t) = ((I + B)u(t)fm). Hence,

||MW(,) _ MM(,)|| < ||(/ + B)(u¡m~>(t) - u(m)('))ll = Hm)(t) - ù<mHt)\\.

The estimates therefore follow from (II) above.

3. In this section we shall show how w-accretive operators A and B

satisfying the sector condition (1.4) may be constructed.

Let C be a selfadjoint operator and E(X), -co < X < +oo, be the corre-

sponding resolution of the identity. A spectral measure E is then determined

by setting F((Xi,X2]) = 7s(A2) — E(XX). Letf(X) and g(X) be complex valued

Baire functions defined and finite F-almost everywhere on the real line (that

is, except at most on a set of measure zero with respect to the spectral measure

E). One may then define operators A and B by setting

Xoo roo
f(X)E(dX),    B= g(X)E(dX)

-oo J — ao

with

D(A) = (x:f^ \f(X)\2(E(dX)x,x) < ooj,

D(B) = {x:/^ \g(X)\2(E(dX)x,x) < <*}.

Theorem 3.1. Assume the following hold for all X in the spectrum of C:

(i) Ref(\) > 0, Reg(X) > 0,

Then A and B are m-accretive operators satisfying the sector condition ( 1.4) for

x G D(A) n D(B).

Proof. We need only apply the operational calculus of selfadjoint opera-

tors [1, Chapter XII]. Since (E(dX)x, x) determines a positive measure,

roo

Re(Ax,x) = j ^ Ref(X)(E(dX)x,x),   x G D(A),
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is accretive if Re f(X) > 0. In addition, A is closed with dense domain and

Re(A*x,x) = f°° Ref(X)(E(dX)x,x),       x E D(A*).

Thus both A and its adjoint are accretive operators, and this is sufficient to

conclude that A is m-accretive. Similary for B.

We also have, for x G D(A) n D(B),

(Ax,(I + B)x) = f" f(X)(l + g(X))(E(dX)x,x).
J — 00

Thus \arg(Ax,(I + B)x)\ < m/4 if

|arg(/(X)(l + f(X)))| r |arg/(X) - arg(l + g(X))| < m/4.

Of course, one also has D(A) C D(B) if, for example, |/(X)| > |g(X)| on the

spectrum of C.

The operators A and B just constructed are known to be normal operators.

Other types of m-accretive operators which satisfy (1.4) may be constructed

from fractional powers of an m-accretive operator C as follows: Let 0 < a

< 1 and Ca denote the indicated  fractional power of C; if x G D(C) then

c^ = sinjra p _,
m     Jo

The following properties of C are well known (see [2], [7]): (1) Ca is m-

sectorial with semiangle ma/2. (2) D(Cß) G D(Ca) if a < ß. (3) Ca+ßx

= Ca(Cßx) if x G D(C2), a + ß < 1. (4) C commutes with every bounded

operator that commutes with C.

Let M and N be positive integers and [a„: 1 < « < N) and {/?„: 1 < «

< M} be real numbers such that a^ > ßM and

(3.1) 0 < ax < a2 < • • • < <xN < 1,

(3.2) 0< ßx < ß2 < ••• <ßM< 1.

Set

(3.3) ^1=2  anCa",    D(A) = D(Ca»),   Va„ > 0,
n=l

M

(3.4) B =   S  bnCß",    D(B) = D(Cß»),    Vbn > 0.
n=l

A and B are sectorial operators with respective semiangles maN/2 and

W/V2- D(A) G D(B) and for x G D(A),

(Ax,(I + B)x) = S an(l + bm)(Ca"x,C^x).
n,m

Ifx G D(C2), then (Ca"x, Cßmx) belongs to a sector |arg z\ < (7r/2)|a„ — /3m|

as can be seen by writing, for example,

(C°"x, C^x) = (Ca"-^C^x, Cß-x),       a„ > ßm.
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Thus if x G D(C2),

(3.5) |arg(^x,(7 + B)x)\ < tt9/2

where 9 = max„m|a„ - ßm\.

Suppose x G D(A) and set xk = k2(C + k)~2x. Then xk G D(C2), xk

-^ x and for 0 < a < aN, Cxk = k2(C + k)~2Cax -* Cax as k -> oo.

Thus Axk -* Ax, Bxk —> Bx and therefore (3.5) holds for each x G D(A). One

also sees in the same way that (anCa"x,amCamx) lies in the right-half of the

complex plane. Since a„ Ca" and am Cam are w-accretive, it follows from [5]

that the same is true for their sum. A simple induction argument then shows

that A and B are w-accretive. We have proved

Theorem 3.2. Suppose {«„}, {/?„} satisfy (3.1), (3.2),

aN > ßN   and   max„Ja„ - ßm\ < |.

Then A and B, defined by (3.3), (3.4) are m-accretive operators which satisfy ( 1.4).
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