LIE GROUPS ISOMORPHIC TO DIRECT PRODUCTS OF UNITARY GROUPS

IVAN VIDAV AND PETER LEGIŠA

ABSTRACT. A criterion is given for a compact connected subgroup of $Gl(n, \mathbb{C})$ to be isomorphic to a direct product of unitary groups. It implies that a compact connected subgroup of rank n in $Gl(n, \mathbb{C})$ is isomorphic to a direct product of unitary groups.

The paper gives a generalization of some of the results in [3]. Let G be a compact connected subgroup of $Gl(n, \mathbb{C})$. We denote by L(G) the Lie algebra of G and set H(G) = iL(G). The rank of G is the dimension of a maximal torus in G (see [1, p. 93]).

THEOREM. Let G be a compact connected subgroup of rank k in $G1(n, \mathbb{C})$. Suppose there exist $r \ge k$ orthogonal idempotents a_1, \ldots, a_r in H(G). Then r = k and G is isomorphic (as a Lie group) to a direct product of unitary groups: $G \cong U(n_1) \times \cdots \times U(n_m)$ with $n_1 + \cdots + n_m = k$.

PROOF. By [2, p. 176, Theorem 1] G is similar to a subgroup of U(n). Hence we may assume that G is a subgroup of U(n). Thus the operators in $H(G) \subset \operatorname{End}(\mathbb{C}^n)$ are hermitian. Since a_1, \ldots, a_r commute we see that $T = \{\exp(it_1 a_1 + \cdots + it_r a_r) | t_1, \ldots, t_r \in \mathbb{R}\}$ is a torus in G of dimension r. Clearly r = k and T is a maximal torus. If $a \in H(G)$ then $\exp(ita) \in G$ $(t \in \mathbb{R})$ and is contained in some conjugate of T (see [1, p. 89]), i.e. $\exp(ita) \in u^{-1} Tu = u^* Tu$ for some $u \in G$. It follows that $a = t_1 u^* a_1 u + \cdots + t_r u^* a_r u$. Since $a^2 = t_1^2 u^* a_1 u + \cdots + t_r^2 u^* a_r u$ and $u^* a_s u \in H(G)$ for $s = 1, \ldots, r$ we see that $a^2 \in H(G)$. Let $b \in H(G)$, too. Since $ab + ba = (a + b)^2 - a^2 - b^2$ we see that $ab + ba \in H(G)$. Also, $ab - ba \in iH(G)$ since $ab \in L(G)$. Thus $ab \in H(G) + iH(G)$. Let $ab \in H(G) + iH(G)$. It follows that $ab \in H(G) + iH(G)$. Let $ab \in H(G) + iH(G)$. It follows that $ab \in H(G) + iH(G)$. Let $ab \in H(G) + iH(G)$. It follows that $ab \in H(G) + iH(G)$. Let $ab \in H(G) + iH(G)$. It follows that $ab \in H(G) + iH(G)$. Let $ab \in H(G) + iH(G)$. It follows that $ab \in H(G) + iH(G)$. Let $ab \in H(G) + iH(G)$. It follows that $ab \in H(G) + iH(G)$. Let $ab \in H(G) + iH(G)$. It follows that $ab \in H(G) + iH(G)$. Let $ab \in H(G) + iH(G)$ is an algebra. Clearly, it is a finite dimensional $ab \in H(G) + iH(G)$. Since $ab \in H(G) + iH(G)$ is an algebra. Clearly, it is a finite dimensional $ab \in H(G) + iH(G)$. Since $ab \in H(G) + iH(G)$ is an algebra. Clearly, it is a finite dimensional $ab \in H(G) + iH(G)$. Thus $ab \in H(G) + iH(G)$ is an algebra. Clearly, it is a finite dimensional $ab \in H(G) + iH(G)$.

The ideal Ae_s is closed, hence selfadjoint and a C^* -subalgebra of A. Clearly, e_s is the identity on Ae_s and hence $e_s^* = e_s$. Consider the group V of unitary elements in Ae_s . The isomorphism $Ae_s \cong \operatorname{End}(X_s)$ defines a (continuous) representation of V on X_s . Using once more [2, p. 176, Theorem 1] we equip X_s with an inner product such that the isomorphism maps V into the unitary

Received by the editors May 26, 1975.

AMS (MOS) subject classifications (1970). Primary 22E15, 22E60; Secondary 46L05, 46L20.

© American Mathematical Society 1976

group of $\mathcal{L}(X_s)$, the C^* -algebra of all linear operators on the Hilbert space X_s . Consequently, hermitian elements in Ae_s are mapped into hermitian operators and our isomorphism in an isometric*-isomorphism. We identify the algebras Ae_s and $\mathcal{L}(X_s)$ in this sense.

Since exp: $L(G) \to G$ is surjective, $G \subset A$. If $u \in G$ then $(ue_s)^* ue_s = e_s u^* ue_s = e_s$. Thus ue_s is a unitary operator on X_s . Consider the smooth homomorphism $G \to U(X_1) \times \cdots \times U(X_m)$ given by $u \mapsto (ue_1, \ldots, ue_m)$ $(U(X_s)$ denotes the unitary group on X_s). We claim this homomorphism is onto. Let $u_1 \in U(X_1)$. There exists a hermitian element $h_1 \in Ae_1$ such that $\exp(ih_1) = u_1$. Consider h_1 as an element in A. Then $\exp(ih_1) = (u_1, 1, \ldots, 1)$. Observe that the inverse $(ue_1, \ldots, ue_m) \mapsto ue_1 + \cdots + ue_m$ is also smooth and that $\operatorname{rank}(U(n_1) \times \cdots \times U(n_m)) = n_1 + \cdots + n_m$.

COROLLARY. Let G be a compact connected subgroup of rank n in $Gl(n, \mathbb{C})$. Then G is isomorphic (as a Lie group) to a direct product of unitary groups.

PROOF. As before, we may assume that $G \le U(n)$. Let T be a maximal torus in G. Then iL(T) contains n commuting linearly independent hermitian operators, say h_1, \ldots, h_n . It is well known that these operators have a common orthogonal eigenbasis. Thus there exist $s \le n$ orthogonal projections p_1, \ldots, p_s such that every h_i is a linear combination of p_1, \ldots, p_s . Since h_1, \ldots, h_n are linearly independent, s = n. Thus iL(G) contains n orthogonal idempotents and we may use the Theorem.

REFERENCES

- 1. J. F. Adams, Lectures on Lie groups, Benjamin, New York and Amsterdam, 1969. MR 40 #5780.
- 2. C. Chevalley, *Theory of Lie groups*. Vol. 1, Princeton Math. Ser., vol. 8, Princeton Univ. Press, Princeton, N.J., 1946. MR 7, 412.
- 3. I. Vidav, The group of isometries and the structure of a finite dimensional Banach space, Linear Algebra and Appl. (to appear).

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF LJUBLJANA, LJUBLJANA, YUGOSLAVIA