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LIE GROUPS ISOMORPHIC TO DIRECT
PRODUCTS OF UNITARY GROUPS

IVAN VIDAV AND PETER LEGISA

ABSTRACT. A criterion is given for a compact connected subgroup of
Gl(n,C) to be isomorphic to a direct product of unitary groups. It implies
that a compact connected subgroup of rank » in Gl(n, C) is isomorphic to a
direct product of unitary groups.

The paper gives a generalization of some of the results in [3]. Let G be a
compact connected subgroup of Gl(n, C). We denote by L(G) the Lie algebra
of G and set H(G) = iL(G). The rank of G is the dimension of a maximal
torus in G (see [1, p. 93)).

THEOREM. Let G be a compact connected subgroup of rank k in Gl(n,C).
Suppose there exist r > k orthogonal idempotents a,, . .., a, in H(G). Thenr =
k and G is isomorphic (as a Lie group) to a direct product of unitary groups:
G=U(m) X -xXU(n,)withn + ---+ n, = k.

PROOF. By [2, p. 176, Theorem 1] G is similar to a subgroup of U(n). Hence
we may assume that G is a subgroup of U(n). Thus the operators in
H(G) C End(C") are hermitian. Since g, ..., a, commute we see that
T = {exp(itya; + - -+ + it,a,)|t;,...,t, € R} is a torus in G of dimension r.
Clearly r = k and T is a maximal torus. If a € H(G) then exp(ita) € G
(r € R) and is contained in some conjugate of T (see [1, p. 89]), i.e.
exp(ita) € u™'Tu = uw*Tu for some u € G. It follows that a = f,u*a u
+ -+ + t,u*a,u. Since a* = tfu*alu + -+ t*u*a,u and u*a,u € H(G)
fors = 1,..., r we see that a* € H(G). Let b € H(G), too. Since ab + ba
= (a + b)* — a® — b? we see that ab + ba € H(G). Also, ab — ba € iH(G)
since ia,ib € L(G). Thus ab € H(G) + iH(G). Let A(G) = H(G)
+ iH(G). It follows that A(G) is an algebra. Clearly, it is a finite dimensional
C*-algebra. By the Wedderburn decomposition there exist central idempo-
tents e, ..., e, € A(G) = A such that 4 = de; & --- & Ae,, and Ae, is
isomorphic to End(X,) for some finite dimensional vector space X, over
C (s=1,...,m).

The ideal Ae, is closed, hence selfadjoint and a C*-subalgebra of 4. Clearly,
e, is the identity on Ae, and hence ef = e,. Consider the group V of unitary
elements in Ae;. The isomorphism Ae, = End(X;) defines a (continuous)
representation of ¥ on X,. Using once more [2, p. 176, Theorem 1] we equip
X, with an inner product such that the isomorphism maps V into the unitary
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group of £(X;), the C*-algebra of all linear operators on the Hilbert space X,.
Consequently, hermitian elements in Ae; are mapped into hermitian operators
and our isomorphism in an isometric*-isomorphism. We identify the algebras
Ae, and £(X;) in this sense.

Since exp: L(G) — G is surjective, G C A. If u € G then (ue)* ue,
= e,u*ue, = e,. Thus ue, is a unitary operator on X;. Consider the smooth
homomorphism G — U(X)) X --- X U(X,,) given by u > (ue,...,ue,,)
(U(X,) denotes the unitary group on X,). We claim this homomorphism is
onto. Let uy € U(X)). There exists a hermitian element , € A¢; such that
exp(ih;) = u;. Consider h; as an element in 4. Then exp(ih)) = (i, 1,...,1).
Observe that the inverse (uey, . .., ue,,) - ue, + - - - + ue,, is also smooth and
that rank(U(n)) X --- X U(n,,)) = n + -+ + n,,.

COROLLARY. Let G be a compact connected subgroup of rank n in Gl(n,C).
Then G is isomorphic (as a Lie group) to a direct product of unitary groups.

PROOF. As before, we may assume that G < U(n). Let T be a maximal torus
in G. Then iL(T) contains n commuting linearly independent hermitian
operators, say Aj, ..., h,. It is well known that these operators have a
common orthogonal eigenbasis. Thus there exist s < n orthogonal projections
Pis - - Pg sSuch that every h; is a linear combination of p;, ..., p,. Since
hy, ..., h, are linearly independent, s = n. Thus iL(G ) contains n orthogonal
idempotents and we may use the Theorem.
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