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FRED COHEN AND EWING L. LUSK

Abstract. Some extensions of the classical Borsuk-Ulam Theorem are

proved by computing a bound on the homology of certain spaces similar to

configuration spaces. The Bourgin-Yang Theorem and a generalization due

to Munkholm are special cases of these results.

1. Introduction. The purpose of this paper is to extend and unify several

generalizations of the Borsuk-Ulam Theorem. Let tt denote the cyclic group

of prime order p and let A' be a pathwise connected Hausdorff space on which

tt acts freely. Suppose that M is some fixed manifold and that /: X —> M is

any map. We are interested in conditions on X, depending on M but not on/,

which are sufficient to insure that a certain number of points in some orbit are

sent to the same point in M by /. Specifically, let a denote the generator of 7Tp

and define

A(f,q) = {x G A|there exist ix,i2,... ,iq with   0 ^ i, < i2

< • • • < iq < p and/(a"x) = f(a^x) = ■■■= f(a¡"x)}.

covering dimension of A, and all cohomology is taken with Zp coefficients

In the case M = Rn, we prove the following, in which dim A denotes the

covering dimension of .

unless otherwise stated.

Theorem  1. If 77'(A) = 0 for 0 < i < (n - \)(p - 1) + a - 1  and q

a i(p + 1) or q = 2, then A(fq) # 0.

Theorem 2. 7/A" is a Zp-orientable m-manifold and H'(X) = 0 for 0 < i

< (n — \)(p — 1) + a — 1 and q is \(p + 1) or q = 2, then dim A i£ m

-(n-\)(p- \)-q+\.

Special cases of these theorems are known:

1. The classical Borsuk-Ulam Theorem is Theorem 1 with X = S" and q

-j»-2[l].
2. The "mod p Bourgin-Yang Theorem" of Munkholm is Theorem 2 with

q = p and X a mod p homology w-sphere [6]. For this special case the proof

given below is much simpler than Munkholm's.

3. The case q = 2 of Theorem 1 appears in [3].

Theorems 1 and 2 are actually special cases of a more general theorem, in

which R" is replaced by an arbitrary manifold M. That is, for each A7 and
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q ^ p there is a number N(M,p,q) (defined below) such that for/: X -> M

we have:

Theorem 3. IfW(X) = 0 for 0 < i á N(M,p,q), thenA(fq) * 0. ///«
addition we assume that X is a Zp-orientable m-manifold, then dim A(f,q)

g m - N(M,p,q) - 1.

To define the numbers N(M,p, q), consider the subspace G(M,p, q) of (M )p

consisting of the p-tuples in which no q coordinates coincide. More precisely,

G(M,p,q) = {(x,,... ,Xp)|for any (x(i,... ,xiq) with 0 < ix

< • • • < L £ p, at least 2 of the x, ' s are different}.

Note that G(M,p,q) G G(M,p,q + 1), G(M,p,p) = (M)p - AM, and
G(M,p,2) is the Fadell-Neuwirth configuration space [5]. The group mp acts

freely on G(M,p,q) by cyclic permutation of coordinates, and the inclusions

G(M,p,q) G G(M,p,p) are equivariant. For some large n, G(M,p,q) embeds

in G(R",p,q) via the embedding of M in R". Define

G(Rx,p,q) - limn G(R",p,q).

Proposition. G(Rco ,p,p) is a free mp-space with trivial homotopy groups and

hence G(R°° ,p,p)/mp is a K(mp, 1).

Proof. Since

Ht,(G(Rco,p,p);Z) = /7*(lim G(Rn ,p,p);Z) = lim H*(G(Rn ,p,p); Z)

and G(R",p,p) » s^p~x)~x, G(RX ,p,p) has trivial homology groups. Since

G(Rœ ,p,p) is simply connected, the result follows from the Hurewicz Theo-

rem.

Definition of N(M,p,q). Let 4> be an equivariant embedding of

G(M,p,q) in G(RX ,p,p). Recall that H'K^X) = 1p for all i and define

N(M,p, q) to be the largest N such that <$>* is not the zero homomorphism. We

have not calculated N(M,p, q) for M # R" except for the case q = 2 (see [4]).

When Af = R", it is sufficient to calculate the first nonvanishing homology

class in a certain union of spheres. This we do in §3. The result is:

Theorem    4.    N(R",p,q) â (n - X)(p - 1) + q - 2 if q g \(p + 1) or q
= 2.

2. Proofs of Theorems 1, 2, and 3. We prove Theorem 3. Theorems 1 and 2

follow immediately from Theorems 3 and 4. Let a he the generator of m and

define </,: X -* (M)p by ^(x) - (f(x),f(ox),... ,/(a^'x)). If A(fq) = 0
then \p is an equivariant map of X into G(M,p,q). Consider the following

diagram, in which the vertical arrows represent projections.

X^G(M,P,q)^G(R™,p,p)

X/mp i G(M,p,q)/mp ±> G(R™,p,p)/mp"p *• \"~yr>ißi "p —v"    >r'f//"p

If tf'(A') = 0 for 0 < i â N(M,p,q), then it follows from the naturality of
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the spectral sequence for a covering that (¡pip) is a monomorphism in degrees

less than or equal to N(M,p,q) + 1, contradicting the fact that <¡>* = 0 in

degrees greater than N(M,p, q). This proves the first part of the theorem.

Now suppose that A' is a Z -orientable w-manifold. Observe that ^ restricts

to an equivariant map of X — A(f, q) into G(M,p, q) and that we may assume

X — A(f,q) is path connected. By the above argument there must be some

/, 0<y^ N(M,p,q), such that 77^ (A' - A(fq)) # 0, and hence

Hj(X - A(f,q)) * 0.

By Alexander Duality, Hm~J(X,A(f,q)) ¥= 0. Similarly Hj(X) = 0 implies
Hm~J(X) = 0, so by the exact cohomology sequence

Hm-j-X(A(f,q))*0.

By the argument which appears in [6], this is enough to prove that the covering

dimension of A(fq) is greater than or equal to m - N(M,p,q) - 1.

3. Proof of Theorem 4. First we remark that the case p = q is particularly

simple since G(7?",p,p) - (R")p - A at S**~iy~l, and so N(R\p,p) ^

n(p - 1) - 1. The case q = 2 appears in [4]. In general, we proceed as

follows. The standard strong deformation retraction of Rnp - {0} onto Snp~x

restricts to a strong deformation retraction of G(R",p,q) onto its intersection

with S"p~x. Let K(n,p,p — q) denote the complement of the image of

G(R",p,q) under this deformation. We \etk = p - q and note^at K(n,p,k)

is the union of spheres of dimension n(k + 1) - 1. Our method of bounding

N(R",p,q) will be the rather crude one of bounding H*G(R*,p,q)/Zp. In

general we will do this by finding a lower bound for H*K(n,p,k) using the

Mayer-Vietoris sequence and then applying Alexander Duality in the (np

— l)-sphere.

First we need some notation for the pieces of K(n,p,k) to which we will

apply Mayer-Vietoris. Let 7 = (ij,... ,ij),j ë k, denote anyy'-tuple of inte-

gers with 0 </i< 1*2 <•••<») S p- We define the length of 7 to be j and

denote it by 1(1). We also permit 7 to be empty and in this case define

1(1 ) = 0. Now let m be any positive integer less than or equal to p — k and

define

W(I,k,m) = {(x,x, ...,x,yx,x,x,... ,x,y2,x,x,... ,x,yk,x,x,. . .,x)\

x G R", ys occurs in the is th place for í = 1, 2, ... ,j,

and there are mx ' s between^ and.Vy+I}.

That is, the coordinates which are not specified to be equal to other

coordinates occur in places ix, i2, ..., ij, ij + m + 1, and beyond. By abuse of

notation we write the sequence x, x, ..., x (ax terms) as xUl. A typical point

in 1^(7, k, m) looks like

(xa>yxxaiy2 ■ ■■xaJyjxmyj+xx'\yJ+2xli ■ ■ ■ ykx¡*-J),

where a, + • • • + oij. + m + /, + ••• + lk_} = p - k = a. We note that the
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a/s are determined by / and ignore them. Observe that W(I, k, m) is a union

of equatorial (n(k + 1) - l)-spheres in Snp~x. We assume that q ^ \(p + 1).

Lemma 1.   [\J^0W(f,k,i)] n W(l,k,m 4- 1) - W(I,k - l,m+ I).

Proof. Observe that a point is in the left-hand side if and only if yJ+x = x.

Therefore yJ+2, ..., yk can be relabeled yJ+x, ..., yk-\.

Lemma 2.   H¡ W(I,k,m) - 0 ifO < i < n + k - 1.

Proof. The proof is by induction on k and for fixed k by downward

induction on /(/). The lemma is true for k = 0 since W(I,0,m) is an (n - X)-

sphere. Fix k and assume that the lemma is true with k - X replacing k. The

induction on /(/) starts with /(/) = k. In this case W(I,k,m) is an

(n(k + 1) - l)-sphere, so the lemma is true. Now suppose that 1(1) = R - X

and that the lemma is true for all / with k g /(/) g R. A point

*>i ■■■yR-Xxm(yRx,\ *>-xl*-x-')

can be rewritten as

xa>yx • • • yRx'*(yR+x •■■x/*-'-<),

so we have W(I, k, m) = U, W(J, k, t), where t varies from 0 to some number

s determined by /, k, and m. Since l(J) > /(/), H, W(J,k,r) = 0 for 0 < /

< n + k - X and all r by induction. Now we assume that H-(\Jt=(i W(J,k,t))

= 0 for 0 < / < n + k - 1 and show that H¡( U,r±o W(J, k, t)) = 0 for 0 < i

< n + k - 1. By Lemma 1 the Mayer-Vietoris sequence is

-> fl¡( Uo W(J,k,f)) © //, H/(y,k>n+ 1) -» //,(t/ «/(y,fc,,))

—> //,_i W(J,k — \,r + 1) —> • • •

in which the left side is 0 for 0 </'</? + k - 1 by the inductions on r and

on /(/) and the right side is 0 for 0 < i < n + k - 1 by the induction on k.

Therefore Ht W(I,k,m) = H¡(W(J,k,t)) = 0 for 0 < / < n + k - 1.
Remark. Note that the second half of this proof shows that for any

sequence J, if H¡ W(J, k,t) = 0 for 0 < / < n + k - X and all t, then

H¡ U/_o W{J, k, t) = 0 for 0 < i < n + k - 1, for any .$.
Proof of Theorem 4. First we note that K(n,p,p - q) = U/Lq^^MX

so by the above remark H¡K(n,p,p - q) = 0 for 0 </'<«+ p - q - 1. By

the remarks at the beginning of this section

WG(R",p,q) s H'(Snp-x - K(n,p,p - q)),

which is in turn isomorphic to Hnp_x_i(Snp~x,K(n,p,p - q)) by Alexander

Duality. Then by the exact sequence

• • • ^ Hp-^S*-1) -» Hnp_x_t(Snp-x,K(n,p,p - q))

-* Hnp-2-j(K(n,p,p - q)) -» ■ ■ •

we have that HiG(Rn,p,q) = 0 for i > (n - l)(p - I) + q - 2. This is suf-
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ficient, by the argument in [4], for example, to conclude that

Hi(G(Rn,p,q)/Zp) = 0    for i > (n - \)(p - 1) + q - 2.

4. An example. In some situations these results are best possible ones. For

example, in [6] Munkholm gives an example for each odd p and each mofa

TTp-action on sm^p~x)~x and a map from sm^p~x'>~x to Rm such that no entire

orbit is sent to the same point in Rm. Our Theorem 1 states that there is an

orbit in which p — 1 points are sent to the same point. This example shows

that in the case q = p — 1 one can have H'(X) = 0 for 0 < / < (n - 1)

• (p - 1) + q - 1 with A(f q + 1) = 0.
Remark. We conjecture that Theorem 4 and hence Theorems 1 and 2 are

true without the restriction q ^ \(p + 1), although it is not hard to see that

Lemma 1 and hence our method of proof break down if q < \(p + 1). The

difficulty can be seen in the case 7 = 0, p = 5, q = 2, m = 0. Lemma 1 then

says W(0,3,0) n W(0,3,l) = W(0,2,l). However a point of the form
(x,z,z,y,x) is in the left-hand side but not the right.
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