CONFIGURATION-LIKE SPACES AND THE BORSUK-ULAM THEOREM

FRED COHEN AND EWING L. LUSK

ABSTRACT. Some extensions of the classical Borsuk-Ulam Theorem are proved by computing a bound on the homology of certain spaces similar to configuration spaces. The Bourgin-Yang Theorem and a generalization due to Munkholm are special cases of these results.

1. Introduction. The purpose of this paper is to extend and unify several generalizations of the Borsuk-Ulam Theorem. Let π_p denote the cyclic group of prime order p and let X be a pathwise connected Hausdorff space on which π_p acts freely. Suppose that M is some fixed manifold and that $f: X \to M$ is any map. We are interested in conditions on X, depending on M but not on f, which are sufficient to insure that a certain number of points in some orbit are sent to the same point in M by f. Specifically, let σ denote the generator of π_p and define

$$A(f,q) = \{x \in X | \text{there exist } i_1, i_2, \dots, i_q \text{ with } 0 \le i_1 < i_2$$

$$< \dots < i_q < p \text{ and } f(\sigma^{i_1} x) = f(\sigma^{i_2} x) = \dots = f(\sigma^{i_q} x) \}.$$

In the case $M = R^n$, we prove the following, in which dim A denotes the covering dimension of A, and all cohomology is taken with \mathbb{Z}_p coefficients unless otherwise stated.

THEOREM 1. If $H^i(X) = 0$ for 0 < i < (n-1)(p-1) + q-1 and $q \ge \frac{1}{2}(p+1)$ or q = 2, then $A(f,q) \ne \emptyset$.

THEOREM 2. If X is a \mathbb{Z}_p -orientable m-manifold and $H^i(X) = 0$ for 0 < i < (n-1)(p-1) + q - 1 and $q \ge \frac{1}{2}(p+1)$ or q = 2, then $\dim A \ge m - (n-1)(p-1) - q + 1$.

Special cases of these theorems are known:

- 1. The classical Borsuk-Ulam Theorem is Theorem 1 with $X = S^n$ and q = p = 2 [1].
- 2. The "mod p Bourgin-Yang Theorem" of Munkholm is Theorem 2 with q = p and X a mod p homology m-sphere [6]. For this special case the proof given below is much simpler than Munkholm's.
 - 3. The case q = 2 of Theorem 1 appears in [3].

Theorems 1 and 2 are actually special cases of a more general theorem, in which R^n is replaced by an arbitrary manifold M. That is, for each M and

Received by the editors September 10, 1974 and, in revised form, January 20, 1975. AMS (MOS) subject classifications (1970). Primary 55C20, 55C35, 54H25.

 $q \le p$ there is a number N(M, p, q) (defined below) such that for $f: X \to M$ we have:

THEOREM 3. If $H^i(X) = 0$ for $0 < i \le N(M, p, q)$, then $A(f, q) \ne \emptyset$. If in addition we assume that X is a \mathbb{Z}_p -orientable m-manifold, then $\dim A(f, q) \ge m - N(M, p, q) - 1$.

To define the numbers N(M, p, q), consider the subspace G(M, p, q) of $(M)^p$ consisting of the p-tuples in which no q coordinates coincide. More precisely,

$$G(M, p, q) = \{(x_1, \dots, x_p) | \text{for any } \{x_{i_1}, \dots, x_{i_q}\} \text{ with } 0 < i_1$$

$$< \dots < i_q \le p, \text{ at least 2 of the } x_{i_i} \text{'s are different} \}.$$

Note that $G(M,p,q) \subset G(M,p,q+1)$, $G(M,p,p) = (M)^p - \Delta_M$, and G(M,p,2) is the Fadell-Neuwirth configuration space [5]. The group π_p acts freely on G(M,p,q) by cyclic permutation of coordinates, and the inclusions $G(M,p,q) \subset G(M,p,p)$ are equivariant. For some large n, G(M,p,q) embeds in $G(R^n,p,q)$ via the embedding of M in R^n . Define

$$G(R^{\infty}, p, q) = \lim_{n \to \infty} G(R^{n}, p, q).$$

PROPOSITION. $G(R^{\infty}, p, p)$ is a free π_p -space with trivial homotopy groups and hence $G(R^{\infty}, p, p)/\pi_p$ is a $K(\pi_p, 1)$.

PROOF. Since

$$H_{\bullet}(G(R^{\infty},p,p); \mathbf{Z}) = H_{\bullet}(\lim_{\longrightarrow} G(R^{n},p,p); \mathbf{Z}) = \lim_{\longrightarrow} H_{\bullet}(G(R^{n},p,p); \mathbf{Z})$$

and $G(R^n, p, p) \simeq S^{n(p-1)-1}$, $G(R^{\infty}, p, p)$ has trivial homology groups. Since $G(R^{\infty}, p, p)$ is simply connected, the result follows from the Hurewicz Theorem.

DEFINITION OF N(M,p,q). Let ϕ be an equivariant embedding of G(M,p,q) in $G(R^{\infty},p,p)$. Recall that $H^{i}K(\pi_{p},1)=\mathbb{Z}_{p}$ for all i and define N(M,p,q) to be the largest N such that ϕ^{*} is not the zero homomorphism. We have not calculated N(M,p,q) for $M \neq R^{n}$ except for the case q=2 (see [4]). When $M=R^{n}$, it is sufficient to calculate the first nonvanishing homology class in a certain union of spheres. This we do in §3. The result is:

THEOREM 4.
$$N(R^n, p, q) \le (n-1)(p-1) + q - 2$$
 if $q \ge \frac{1}{2}(p+1)$ or $q = 2$.

2. **Proofs of Theorems 1, 2, and 3.** We prove Theorem 3. Theorems 1 and 2 follow immediately from Theorems 3 and 4. Let σ be the generator of π_p and define $\psi: X \to (M)^p$ by $\psi(x) = (f(x), f(\sigma x), \dots, f(\sigma^{p-1} x))$. If $A(f, q) = \emptyset$ then ψ is an equivariant map of X into G(M, p, q). Consider the following diagram, in which the vertical arrows represent projections.

$$\begin{array}{ccc} X \xrightarrow{\psi} G(M,p,q) \xrightarrow{\phi} G(R^{\infty},p,p) \\ \downarrow & \downarrow & \downarrow \\ X/\pi_p \xrightarrow{\hat{\psi}} G(M,p,q)/\pi_p \xrightarrow{\hat{\phi}} G(R^{\infty},p,p)/\pi_p \end{array}$$

If $H^{i}(X) = 0$ for $0 < i \le N(M, p, q)$, then it follows from the naturality of

the spectral sequence for a covering that $(\hat{\phi}\hat{\psi})^*$ is a monomorphism in degrees less than or equal to N(M,p,q)+1, contradicting the fact that $\hat{\phi}^*=0$ in degrees greater than N(M,p,q). This proves the first part of the theorem.

Now suppose that X is a \mathbb{Z}_p -orientable m-manifold. Observe that ψ restricts to an equivariant map of X - A(f,q) into G(M,p,q) and that we may assume X - A(f,q) is path connected. By the above argument there must be some $j, 0 < j \le N(M,p,q)$, such that $H^j(X - A(f,q)) \ne 0$, and hence

$$H_i(X - A(f,q)) \neq 0.$$

By Alexander Duality, $H^{m-j}(X, A(f, q)) \neq 0$. Similarly $H_j(X) = 0$ implies $H^{m-j}(X) = 0$, so by the exact cohomology sequence

$$\overline{H}^{m-j-1}(A(f,q)) \neq 0.$$

By the argument which appears in [6], this is enough to prove that the covering dimension of A(f,q) is greater than or equal to m - N(M,p,q) - 1.

3. **Proof of Theorem 4.** First we remark that the case p=q is particularly simple since $G(R^n,p,p)=(R^n)^p-\Delta\simeq S^{n(p-1)-1}$, and so $N(R^n,p,p)\leqq n(p-1)-1$. The case q=2 appears in [4]. In general, we proceed as follows. The standard strong deformation retraction of $R^{np}-\{0\}$ onto S^{np-1} restricts to a strong deformation retraction of $G(R^n,p,q)$ onto its intersection with S^{np-1} . Let K(n,p,p-q) denote the complement of the image of $G(R^n,p,q)$ under this deformation. We let k=p-q and note that K(n,p,k) is the union of spheres of dimension n(k+1)-1. Our method of bounding $N(R^n,p,q)$ will be the rather crude one of bounding $H^*G(R^n,p,q)/\mathbb{Z}_p$. In general we will do this by finding a lower bound for $H_*K(n,p,k)$ using the Mayer-Vietoris sequence and then applying Alexander Duality in the (np-1)-sphere.

First we need some notation for the pieces of K(n,p,k) to which we will apply Mayer-Vietoris. Let $I=(i_1,\ldots,i_j), j\leq k$, denote any j-tuple of integers with $0< i_1< i_2<\cdots< i_j\leq p$. We define the *length* of I to be j and denote it by l(I). We also permit I to be empty and in this case define l(I)=0. Now let m be any positive integer less than or equal to p-k and define

$$W(I,k,m) = \{(x,x,\ldots,x,y_1,x,x,\ldots,x,y_2,x,x,\ldots,x,y_k,x,x,\ldots,x) |$$

$$x \in R^n, y_s \text{ occurs in the } i_s \text{ th place for } s = 1, 2, \ldots, j,$$
and there are mx 's between y_i and y_{i+1} .

That is, the coordinates which are not specified to be equal to other coordinates occur in places $i_1, i_2, \ldots, i_j, i_j + m + 1$, and beyond. By abuse of notation we write the sequence x, x, \ldots, x (α_1 terms) as x^{α_1} . A typical point in W(I, k, m) looks like

$$(x^{\alpha_1}y_1x^{\alpha_2}y_2\cdots x^{\alpha_j}y_ix^my_{i+1}x^{l_1}y_{i+2}x^{l_2}\cdots y_kx^{l_{k-j}}),$$

where $\alpha_1 + \cdots + \alpha_j + m + l_1 + \cdots + l_{k-j} = p - k = q$. We note that the

 α_i 's are determined by I and ignore them. Observe that W(I, k, m) is a union of equatorial (n(k+1)-1)-spheres in S^{np-1} . We assume that $q \ge \frac{1}{2}(p+1)$.

LEMMA 1.
$$\left[\bigcup_{i=0}^{m} W(I,k,i)\right] \cap W(I,k,m+1) = W(I,k-1,m+1).$$

PROOF. Observe that a point is in the left-hand side if and only if $y_{j+1} = x$. Therefore y_{j+2}, \ldots, y_k can be relabeled y_{j+1}, \ldots, y_{k-1} .

LEMMA 2.
$$H_i W(I, k, m) = 0$$
 if $0 < i < n + k - 1$.

PROOF. The proof is by induction on k and for fixed k by downward induction on l(I). The lemma is true for k = 0 since W(I, 0, m) is an (n - 1)-sphere. Fix k and assume that the lemma is true with k - 1 replacing k. The induction on l(I) starts with l(I) = k. In this case W(I, k, m) is an (n(k + 1) - 1)-sphere, so the lemma is true. Now suppose that l(I) = R - 1 and that the lemma is true for all I with $k \ge l(I) \ge R$. A point

$$x^{\alpha_1}y_1\cdots y_{R-1}x^m(y_Rx^{l_1}\cdots x^{l_{R-1-k}})$$

can be rewritten as

$$x^{\alpha_1}y_1 \cdots y_R x^{l_1} (y_{R+1} \cdots x^{l_{R-1-k}}),$$

so we have $W(I,k,m) = \bigcup_t W(J,k,t)$, where t varies from 0 to some number s determined by I, k, and m. Since l(J) > l(I), $H_i W(J,k,r) = 0$ for 0 < i < n+k-1 and all r by induction. Now we assume that $H_i(\bigcup_{t=0}^r W(J,k,t)) = 0$ for 0 < i < n+k-1 and show that $H_i(\bigcup_{t=0}^{r+1} W(J,k,t)) = 0$ for 0 < i < n+k-1. By Lemma 1 the Mayer-Vietoris sequence is

$$\cdots \to H_i\left(\bigcup_{t=0}^r W(J,k,t)\right) \oplus H_i W(J,k,r+1) \to H_i\left(\bigcup_{t=0}^{r+1} W(J,k,t)\right)$$

$$\to H_{i-1} W(J,k-1,r+1) \to \cdots$$

in which the left side is 0 for 0 < i < n + k - 1 by the inductions on r and on l(I) and the right side is 0 for 0 < i < n + k - 1 by the induction on k. Therefore $H_i(M(I,k,m)) = H_i(M(I,k,t)) = 0$ for 0 < i < n + k - 1.

REMARK. Note that the second half of this proof shows that for any sequence J, if $H_i W(J,k,t) = 0$ for 0 < i < n+k-1 and all t, then $H_i \cup_{t=0}^{s} W(J,k,t) = 0$ for 0 < i < n+k-1, for any s.

PROOF OF THEOREM 4. First we note that $K(n, p, p - q) = \bigcup_{t=0}^{p} W(\emptyset, k, t)$, so by the above remark $H_i K(n, p, p - q) = 0$ for 0 < i < n + p - q - 1. By the remarks at the beginning of this section

$$H^iG(\mathbb{R}^n,p,q)\cong H^i(\mathbb{S}^{np-1}-K(n,p,p-q)),$$

which is in turn isomorphic to $H_{np-1-i}(S^{np-1}, K(n, p, p-q))$ by Alexander Duality. Then by the exact sequence

$$\cdots \to H_{np-1-i}(S^{np-1}) \to H_{np-1-i}(S^{np-1}, K(n, p, p-q))$$
$$\to H_{np-2-i}(K(n, p, p-q)) \to \cdots$$

we have that $H^iG(\mathbb{R}^n, p, q) = 0$ for i > (n-1)(p-1) + q - 2. This is suf-

ficient, by the argument in [4], for example, to conclude that

$$H^{i}(G(\mathbb{R}^{n}, p, q)/\mathbb{Z}_{n}) = 0$$
 for $i > (n-1)(p-1) + q - 2$.

4. An example. In some situations these results are best possible ones. For example, in [6] Munkholm gives an example for each odd p and each m of a π_p -action on $S^{m(p-1)-1}$ and a map from $S^{m(p-1)-1}$ to R^m such that no entire orbit is sent to the same point in R^m . Our Theorem 1 states that there is an orbit in which p-1 points are sent to the same point. This example shows that in the case q=p-1 one can have $H^i(X)=0$ for $0 < i < (n-1) \cdot (p-1)+q-1$ with $A(f,q+1)=\emptyset$.

REMARK. We conjecture that Theorem 4 and hence Theorems 1 and 2 are true without the restriction $q \ge \frac{1}{2}(p+1)$, although it is not hard to see that Lemma 1 and hence our method of proof break down if $q < \frac{1}{2}(p+1)$. The difficulty can be seen in the case $I = \emptyset$, p = 5, q = 2, m = 0. Lemma 1 then says $W(\emptyset, 3, 0) \cap W(\emptyset, 3, 1) = W(\emptyset, 2, 1)$. However a point of the form (x, z, z, y, x) is in the left-hand side but not the right.

REFERENCES

- 1. K. Borsuk, Drei Sätze über die n-dimensional Euklidische Sphäre, Fund. Math. 20 (1933), 177-190.
- 2. D. G. Bourgin, On some separation and mapping theorems, Comment. Math. Helv. 29 (1955), 199-214. MR 17, 289.
- 3. F. Cohen and J. Connett, A coincidence theorem related to the Borsuk-Ulam theorem, Proc. Amer. Math. Soc. 44 (1974), 218-220.
- 4. F. Cohen and E. L. Lusk, Coincidence point results for spaces with free \mathbb{Z}_p -actions, Proc. Amer. Math. Soc. 49 (1975), 245–252.
- 5. E. Fadell and L. Neuwirth, Configuration spaces, Math. Scand. 10 (1962), 111-118. MR 25 #4537.
- 6. H. J. Munkholm, Borsuk-Ulam type theorems for proper \mathbb{Z}_p -actions on (mod p homology) n-spheres, Math. Scand. 24 (1969), 167–185 (1970). MR 41 #2672.
- 7. C.-T. Yang, Continuous functions from spheres to euclidean spaces, Ann. of Math. (2) 62 (1955), 284-292. MR 17, 289.

DEPARTMENT OF MATHEMATICS, NORTHERN ILLINOIS UNIVERSITY, DEKALB, ILLINOIS 60115