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CONFIGURATION-LIKE SPACES AND THE
BORSUK-ULAM THEOREM

FRED COHEN AND EWING L. LUSK

ABSTRACT. Some extensions of the classical Borsuk-Ulam Theorem are
proved by computing a bound on the homology of certain spaces similar to
configuration spaces. The Bourgin-Yang Theorem and a generalization due
to Munkholm are special cases of these results.

1. Introduction. The purpose of this paper is to extend and unify several
generalizations of the Borsuk-Ulam Theorem. Let 7, denote the cyclic group
of prime order p and let X be a pathwise connected Hausdorff space on which
m, acts freely. Suppose that M is some fixed manifold and that f: X —> M is
any map. We are interested in conditions on X, depending on M but not on f,
which are sufficient to insure that a certain number of points in some orbit are
sent to the same point in M by f. Specifically, let o denote the generator of m,
and define

A(f,q) = {x € X|there exist ij,i,...,i; with 0 =i <i
<<y < pand f(o'x) = f(o'2x) = - -+ = f(o"x)}.

In the case M = R”, we prove the following, in which dim A4 denotes the
covering dimension of 4, and all cohomology is taken with Z, coefficients
unless otherwise stated.

THEOREM 1. If HI(X) =0 for 0<i<(n—1D(p—1)+¢qg—1 and g
Z p+1)orq =2, then A(f,q) + @.

THEOREM 2. If X is a Z,-orientable m-manifold and H iX)=0for0<i
<(n-D(p—1)+qg—landqzi(p+1)orq=2, then dmA = m
-n-ND(p-1D-g+1

Special cases of these theorems are known:

1. The classical Borsuk-Ulam Theorem is Theorem 1 with X = S” and ¢
=p=2][1]

2. The “mod p Bourgin-Yang Theorem” of Munkholm is Theorem 2 with
q = p and X a mod p homology m-sphere [6]. For this special case the proof
given below is much simpler than Munkholm’s.

3. The case ¢ = 2 of Theorem 1 appears in [3].

Theorems 1 and 2 are actually special cases of a more general theorem, in
which R” is replaced by an arbitrary manifold M. That is, for each M and
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q = p there is a number N(M,p, q) (defined below) such that for f: X - M
we have:

THEOREM 3. IfH'(X) = 0 for 0 < i = N(M,p,q), then A(f,q) # . If in
addition we assume that X is a ZL,-orientable m-manifold, then dim A(S,q)
=m-NM,p,q)— 1.

To define the numbers N(M, p, q), consider the subspace G(M, p, q) of (M )?
consisting of the p-tuples in which no g coordinates coincide. More precisely,

G(M,p,q) = {(x,...,xp)lfor any {x;, ... ,xiq} with 0 < j
<---<i, = p,atleast 2 of the x; * s are different}.

Note that G(M,p,q) C G(M,p,q+ 1), G(M,p,p) = (M)? — A,,, and
G(M,p,2) is the Fadell-Neuwirth configuration space [5]. The group 7, acts
freely on G(M, p,q) by cyclic permutation of coordinates, and the inclusions
G(M,p,q) C G(M,p,p) are equivariant. For some large n, G(M, p, g) embeds
in G(R",p, q) via the embedding of M in R". Define

G(R*,p,q) = lim, G(R", p,q).

PROPOSITION. G(R®, p,p) is a free m,-space with trivial homotopy groups and
hence G(R®,p,p) /m, is a K(m,, 1).

ProoF. Since
H,(G(R®,p,p); Z) = Hy(lim G(R",p,p); Z) = lim H,(G(R",p,p); Z)

and G(R",p,p) =~ S™»~V~1 G(R®,p,p) has trivial homology groups. Since
G(R®,p,p) is simply connected, the result follows from the Hurewicz Theo-
rem.

DEFINITION OF ‘N(M,p,q). Let ¢ be an equivariant embedding of
G(M,p,q) in G(R®,p,p). Recall that HiK(ﬂp, 1) = Z, for all.i and define
N(M,p, q) to be the largest N such that ¢* is not the zero homomorphism. We
have not calculated N(M, p, q) for M # R" except for the case ¢ = 2 (see [4]).
When M = R", it is sufficient to calculate the first nonvanishing homology
class in a certain union of spheres. This we do in §3. The result is:

THEOREM 4. N(R".p,q) = (n—1D)(p—1)+qg—-2ifgz=3(p+1org
= 2.

2. Proofs of Theorems 1, 2, and 3. We prove Theorem 3. Theorems 1 and 2
follow immediately from Theorems 3 and 4. Let o be the generator of 7, and

define y: X — (M)? by Y(x) = (f(x),f(ox),....f(6?"'x)). If A(f,q) =@
then ¢ is an equivariant map of X into G(M,p,q). Consider the following
diagram, in which the vertical arrows represent projections.

X > G(M,p,q) *> G(R®,p,p)
X/m, 4> G(M,p,q)/m, > G(R®,p,p) /7,
If H(X) = 0for 0 < i = N(M,p,q), then it follows from the naturality of
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the spectral sequence for a covering that (3)* is a monomorphism in degrees
less than or equal to N(M,p,q) + 1, contradicting the fact that $* = 0 in
degrees greater than N(M, p, q). This proves the first part of the theorem.

Now suppose that X is a Z,-orientable m-manifold. Observe that y restricts
to an equivariant map of X — A(f, q) into G(M, p, q) and that we may assume
X — A(f,q) is path connected. By the above argument there must be some
j,0 < j = N(M,p,q), such that H/(X — A(f,q)) # 0, and hence

H(X - A(f,q)) # 0.

By Alexander Duality, H m=J(X,A(f,q)) # 0. Similarly H;(X) = 0 implies
H™J(X) = 0, so by the exact cohomology sequence

H™ 7Y (A(f,9)) # 0.

By the argument which appears in [6], this is enough to prove that the covering
dimension of A(f,q) is greater than or equal to m — N(M,p,q) — 1.

3. Proof of Theorem 4. First we remark that the case p = ¢ is particularly
simple since G(R",p,p) = (R")? — A =~ §"P~D-1 and so N(R",p,p) =
n(p — 1) — 1. The case ¢ = 2 appears in [4]. In general, we proceed as
follows. The standard strong deformation retraction of R” — {0} onto S~
restricts to a strong deformation retraction of G(R",p, ¢) onto its intersection
with S”~!. Let K(n,p,p — q) denote the complement of the image of
G(R",p,q) under this deformation. We let k = p — g and note that K(n,p, k)
is the union of spheres of dimension n(k + 1) — 1. Our method of bounding
N(R",p,q) will be the rather crude one of bounding H*G(R®,p,q)/Z,. In
general we will do this by finding a lower bound for H, K(n,p,k) using the
Mayer-Vietoris sequence and then applying Alexander Duality in the (np
— 1)-sphere.

First we need some notation for the pieces of K(n,p,k) to which we will
apply Mayer-Vietoris. Let I = (i, ...,i;),j = k, denote any j-tuple of inte-
gers with 0 < i < iy < --- < i; = p. We define the length of I to be j and
denote it by /(I). We also permit / to be empty and in this case define
I(I) = 0. Now let m be any positive integer less than or equal to p — k and
define

WL k,m) = {(X, X, ..oy X1 X Xy oo 3 Xy P23 Xy Xy o ey Xy Vis Xy Xy o o 5 X))
X € R", y, occurs in the i th place fors = 1,2, ...,
and there are mx * s between y; and y;,}.

That is, the coordinates which are not specified to be equal to other
coordinates occur in places i, i, ..., i, i+ m+ 1, and beyond. By abuse of
notation we write the sequence x, x, ..., x (a; terms) as x*. A typical point
in W(I, k, m) looks like

i ] / Le_;
(x®y X2y - XUy X"y XN X2 ey xh),

where ay + -+ +a;+m+h +---+ L _;=p— k=g We note that the
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a;’s are determined by I and ignore them. Observe that W(/, k,m) is a union
of equatorial (n(k + 1) — 1)-spheres in S”~!. We assume that ¢ = }(p + 1).

Lemma 1. [UM W(L ki)l N W(Lkm+ 1) = WLk —1,m+ 1).

PrROOF. Observe that a point is in the left-hand side if and only if y;,| = x.
Therefore y; 5, ..., ¥ can be relabeled y;,, ..., ye—1-

LemMMA 2. HW(Lkm) =0if0<i<n+k-—1

PrOOF. The proof is by induction on k and for fixed k by downward
induction on /(I). The lemma is true for k = 0 since W(1,0,m) is an (n — 1)-
sphere. Fix k and assume that the lemma is true with k — 1 replacing k. The
induction on /(I) starts with /(I) = k. In this case W(l,k,m) is an
(n(k + 1) — 1)-sphere, so the lemma is true. Now suppose that /(/) = R — 1
and that the lemma is true for all / with k = /(I) = R. A point

X%y .- “YR-1 X'"(yR xh... x’k—l—k)

can be rewritten as

I Ipo1-
XUy XN ( YRy - - XRIH),

so we have W(I,k,m) = U,W(J,k, ), where t varies from 0 to some number
s determined by I, k, and m. Since /(J) > I(I), H;W(J,k,r) = 0 for 0 < i
<'n+ k — 1 and all r by induction. Now we assume that H,(U;_o W(J, k, 1))
= 0for0 < i< n+k—1andshow that H(U/ZLW(J,k,1)) = Ofor 0 < i
< n+k— 1. By Lemma 1 the Mayer-Vietoris sequence is

r +1
- H,.('u0 WU, k, z)) ® HWU,kr + 1) - H,.('uo Wk, t))
= 1=

> H_ WJ,k—1Lr+1)—>--.

in which the left side is 0 for 0 < i < n + k — 1 by the inductions on r and
on /(I') and the right side is 0 for 0 < i < n + k — 1 by the induction on k.
Therefore H; W(I,k,m) = H(W(J,k,t)) = 0for0 <i<n+k— 1.

REMARK. Note that the second half of this proof shows that for any
sequence J, if H;W(J,k,{) =0 for 0 <i<n+k—1 and all s, then
H; Ui_g W(J,k,1) = 0for 0 < i< n+k— 1, for any s.

PROOF OF THEOREM 4. First we note that K(n,p,p — q) = UL (W (D, k, 1),
so by the above remark H;K(n,p,p —q) = 0for0 <i<n+p—-gq— 1. By
the remarks at the beginning of this section

H'G(R",p,q) = H'(S" ' — K(n,p,p — q)),

which is in turn isomorphic to H,, ,_,(S™"', K(n,p,p — q)) by Alexander
Duality. Then by the exact sequence

' HnP—l—i(Snp_I) — H, —l—i(Snp_l’K(n’p’P - q))

- HnP-Z—i(K(n’p’p - q)) e
we have that H'G(R",p,q) = 0 fori > (n — 1)(p — 1) + ¢ — 2. This is suf-
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ficient, by the argument in [4], for example, to conclude that

H'(G(R",p,q)/Z,) =0 fori>(n—1)(p—1)+q-2.

4. An example. In some situations these results are best possible ones. For
example, in [6] Munkholm gives an example for each odd p and each m of a
m,-action on S™P=D-1 and a map from S™7~D-1 to R™ such that no entire
orbit is sent to the same point in R™. Our Theorem 1 states that there is an
orbit in which p — 1 points are sent to the same point. This example shows
that in the case ¢ = p — 1 one can have H(X) = 0for 0 < i < (n — 1)
“(p—=1D+qg-1withd(f,q+1) =@.

REMARK. We conjecture that Theorem 4 and hence Theorems 1 and 2 are
true without the restriction ¢ = 1(p + 1), although it is not hard to see that
Lemma 1 and hence our method of proof break down if ¢ < }(p + 1). The
difficulty can be seenin thecase I = &, p = 5, ¢ = 2, m = 0. Lemma 1 then
says W(2,3,0) N W(J,3,1) = W(3J,2,1). However a point of the form
(x,2,2,y,x) is in the left-hand side but not the right.
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