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QUOTIENT RINGS

NADINE MOORE

Abstract. The author considers some properties of extension rings S of a

ring A that satisfy the condition that every maximal ideal of B is an extension

of some ideal of A. Such extensions have been used by D. Lissner, K.

Lonsted, N. Moore, and A. Simis to obtain rings for which the projective

moduli are arbitrarily less than the dimension of the maximal spectra. It is

shown that families of prime ideals of maximal type can be used to construct

such extensions.

Introduction. Throughout this paper all rings are assumed to be commuta-

tive with an identity and all extension rings are assumed to be unitary

extensions. If B is an extension ring of a ring A, the pair (B, A) is said to have

Property EM if every maximal ideal of B can be written as IB for some ideal /

oí A.

We now list some results concerning pairs of rings with Property EM. The

proofs are elementary and are omitted.

Result 1.1. If B is an extension ring of a ring A, then a necessary and a

sufficient condition for (B, A) to have Property EM is that M = (M PI A)B for

each maximal ideal M of B.

Result 1.2. Suppose C is an extension ring of B and B is an extension ring of

a ring A.

(a) // (C, A) has Property EM, then (C, B) has Property EM.

(b) // C is an integral extension of B and if both (C, B) and (B, A) have

Property EM, then (C, A) has Property EM.

Result 1.3. If B is an extension ring of a ring A and (B, A) has Property EM,

then [B/I,A/(I DA)] has Property EMfor each ideal I of B.

For a ring A, max A denotes the maximal spectrum of A with the Zariski

topology [1, Chapter III, §3].

Theorem 1.4. Suppose B is an extension ring of a ring A and (B, A) has

Property EM.

(a) If m & max A, then mB = B or mB G max B.

(b) If aB ¥= B for all proper ideals a of A, then the mapping M —> M D A

defines a continuous bijection of max B into max A. The inverse mapping is given

by m -» mB.
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Proof. Suppose m G max A is such that mB ¥= B. Then mB G M for some

maximal ideal M of B; hence m Q M n A # A. Therefore m = M n A and

M = (A/ D ,4)5 = wj5.

To prove condition (b), we let / be the mapping from max B defined by

f(M) = M n A, and we let g be the mapping from max A defined by

g(m) = mB. Condition (a) implies g: max A -» max B. We now show that

/: max B —> max A. Suppose M G max B. Since M P\ A ¥= A, there is a

maximal ideal m of A which contains M D A. Then A/ = (A/ fl/l)¿C mfi

¥= B; it follows that M = mB. Hence M P\ A = m. We have proved M D A

G max /I and gf(M) = M. If m G max yí, then /g(m) = mB r\ A = m. It

is well known that if h: A -» ¿? is a ring homomorphism, then the map

spec 5 -» spec A given by p -* h~x(p) is continuous. By letting Ä be the

inclusion mapping, we deduce that/is continuous.

Proposition 1.5 [3], [6]. If B is an integral extension of A such that for each

maximal ideal m of A there is a unique ideal of B which lies over m, then

M -* M H A defines a homeomorphism from max B onto max A.

2. Unimodular elements. Throughout this section B is an extension ring of a

ring A. If X is a ring and P is an A'-module, an element u of P is called X-

unimodular if j\u) is a unit of X for some/ G Homx(P,X). If P is a ß-module,

we regard /* also as an A -module in the usual way.

Proposition 2.1 [3]. Suppose X is a ring and P is an X-module.

(a) If u G P is X-unimodular, then u & mP for all m G max X.

(b) // P is a projective X-module and u & mP for all m G max X, then u is

X-unimodular.

Corollary 2.2. Suppose (B, A) has Property EM and aB # B for all proper

ideals a of A. Suppose also that P is a B-module which is projective as an A-

module. If u G P is B-unimodular, then u is A-unimodular.

Corollary 2.3. Suppose (B, A) has Property EM and suppose P is a projective

B-module. If u G P is A-unimodular, then u is also B-unimodular.

The projective modulus of a ring X, denoted pm X, is the least nonnegative

integer k such that every projective A'-module is the direct sum of a free

module and a module of rank < k.

Corollary 2.4. Suppose B is a projective A-module for which 0</

— rank^ B — d < oo [see [1] for definition], max 5 is noetherian, and (B, A)

has Property EM. Then pm B < pm A/d. If B is also an integral extension of A,

then pm B < dim max B/d.

The proof is in [3].

The ring extension B in Corollary 2.4 for which / - rank^ B = d > 1

satisfies the inequality that dim max B > pm B. For such rings Corollary 2.4

is an improvement over Serre's theorem [1] that dim max B > pm B.

3. Integral extensions. Throughout this section we assume B is an integral

extension of A. Let {P¡} be a family of prime ideals of A and T = A — U P¡.

The family {P¡} is said to be of maximal type [6] if every maximal ideal of TA
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is of the form T~ P¡ for some i, or equivalently if any ideal of A maximal

among the ideals not intersecting T is some P¡. If there are no inclusion

relations among the P/s then max T~XA = [T~x P¡) [6].

Theorem 3.1. Suppose {P¡} is a family of prime ideals of A of maximal type

such that there are no inclusion relations among the P/s. Let (Qj) be the family

of all prime ideals Q of B such that Q n A = Pi for some i. Let T = A — UP,
and S = B - \JQ¡. Then:

(a) T~XB = S~XB;

(b) {Qj} is a family of prime ideals of B of maximal type such that there are no

inclusion relations among the Qfs.

Proof. There are no inclusion relations among the Qjs by the Cohen-

Seidenberg going-up lemma. The major part of the proof consists of showing

that max T~x B = {Qj(T~xB)}. For each/ Qj D T = 0 and Qj(T~x B) is a

prime ideal of T~xB. The maximal ideals of T~x B are those ideals of the form

M(T~XB) where M is an ideal of B which is maximal with respect to the

property that A/ D T = 0. Since T~x B is an integral extension of T~x A, for

such Afs (M n A)T~XA = M(T~XB) D T~xA is a maximal ideal of T~XA.

It follows that M n A = P¡ for some i. Then M = Qj for some j. We have

proved max T~xB Q {Qj(T~xB)}. Since any Qj(T~x B) is contained in some

maximal ideal of T~xB of the type Qk(T~x B), it follows that Q, Q Qk ; hence

Qj = Qk. To prove Condition (a) let s G S. For all / s £ g, ; hence

j £ Q:(T~XB). Therefore i is a unit of T~xB. Condition (b) is a trivial

consequence of Condition (a) and the preceding remarks.

Corollary 3.2. Suppose {P¡} is a family of prime ideals of A of maximal type

such that Pi B = Q¡ is a prime ideal of B for each i. Let S — B — U Q¡ and

T = A - {JP¡. Then:

(a) S~XB = T-XB.

(b) (S~XB, T~XA) has Property EM.

(c) max S~xB is homeomorphic to max T~xA.

(d) If B is a projective A-module off — rank d (0 < d < oo) and max B is

noetherian, then pm S~XB < dim max S~l B/d.

Proof. It follows from the Cohen-Seidenberg going-up lemma that for each

(', Qj is the unique prime ideal of B which lies over P¡. The corollary now

follows from Theorem 3.1, Proposition 1.5, and Corollary 2.4.

Example. Suppose F is a field which is not algebraically closed and K is a.

finite extension field of F. F[X] denotes the ring of polynomials F[XX,...,Xn]

in n indeterminates; similarly for K[X]. Let / be a proper ideal of F[X] and V

be a nonempty set in the variety of / in F" = F X ■ • • X F. Let J = /A"^].

Then [3] we have J D F[X] = / and the map A = F[X]/I -» K[X]/J = B is

a monomorphism, which we regard as an inclusion. We consider A as a ring

of functions from V into F and B as a ring of functions from V into K. For

each v G V, let M„ = {/ G A: f(v) = 0} and Nv = {/ G B: f(v) = 0}.

{Mv: v G V) is a family of prime ideals of A of maximal type [6]. {Nv: v G V)

is a family of prime ideals of B. For each v G V, Nv = MVB [3]. Let

F = /l- UM, = {/£ ^: /(t/) ^ o  for   all  v G K}  and   5 = ß - U ¿V„
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= {/ e B: f(v) 7e 0 for all v G V). Corollary 3.2 applies in this case.

One example [3], [5] that the upper bound in Corollary 3.2(d) is the best

possible in general is obtained by taking F to be the field of real numbers, K

to be the field of complex numbers, and / to be the ideal of F[X] generated

by 1 - A,2 - A22 - A32. In this case 1 =pm5_l5 = dim max S~xB/2.

In the remainder of this paper we are concerned with partial converses to

Theorem 3.1.

Theorem 3.3. Suppose {Q¡} is a family of prime ideals of B of maximal type.

For each i, let P¡ = Q¡ D A. Let S = B - UQ¡and T = A - U P¡. Suppose

T~x B = S~x B. Then {P¡} is a family of prime ideals of A of maximal type.

Proof. It is sufficient to show that max T~l A C [P¡(T~X A)}. Suppose m is

a maximal ideal of T~x A. Since T~x B is an integral extension of T~xA, there

is a maximal ideal Qi(T~x B) = Q¡(S~X B) of S~x B which lies over m; that is,

m = (Q¡ n A)T~XA = P¡(T-XA).

Theorem 3.4. Suppose B, when regarded as an A-module, is finitely-generated

and projective. Suppose {Q¡) is a family of prime ideals of B of maximal type such

that there are no inclusions among the Q¡'s and such that for each i, Q¡ is the

unique prime ideal of B which lies over the prime ideal P¡ = Q¡ fl A of A. Let

S = B - UQ¡andT = A - UP¡. Then:
(a)5_15 = T~XB.

(b) {Pj} is a family of prime ideals of A of maximal type such that there are no

inclusion relations among the P¡'s.

In the proof we need to recall some properties of the determinant, denoted

det/ of an endomorphism/of a finitely-generated projective A -module M [2].

An A -module N is chosen so that M © N = F is a finitely-generated free A-

module. Let g be the extension of / to the endomorphism of F which is the

identity mapping on N. Then det/is defined to be det g./is an automorphism

if and only if det/is a unit of A. If T is a multiplicatively closed set of A such

that 0 £ T and 1 G T, then the endomorphism T~xf of T~x P has the same

determinant as/.

Proof. Let s G S. Let /: J3 —> 5 be the /I-endomorphism defined by

f(b) = sb for each b G B. It is sufficient to prove that 7"'/is an automor-

phism; for if g is the inverse of T~lf, then 1 = T~xf(g(\)) = sg(l) and then

s is a unit of T~xB. Since det T~xf = det/ G A, it suffices to prove that

det/ £ P¡ for all i. Fix ; and let P = P¡ and Q = Q¡. It follows from the

hypothesis that BP has a unique maximal ideal QBP; hence BP = Bq. Since i

is a unit in Bq, (B — Q)f is an A ̂ -automorphism of Bq and det/

= det (B - Q)~xf is a unit in AP. Hence det/ 62 P. Condition (b) follows

from Condition (a), Theorem 3.3 and the Cohen-Seidenberg going-up lemma.
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