ON THE MEAN ERGODIC THEOREM OF SINE

STUART P. LLOYD

ABSTRACT. Robert Sine has shown that $(1/n)(I+T+\cdots+T^{n-1})$, the ergodic averages, converge in the strong operator topology iff the invariant vectors of T separate the invariant vectors of the adjoint operator T^* , T being any Banach space contraction. We prove a generalization in which (spectral radius of T) ≤ 1 replaces $||T|| \leq 1$, and any bounded averaging sequence converging uniformly to invariance replaces the ergodic averages; it is necessary to assume that such sequences exist.

- 1. Introduction. Let $T: \mathfrak{A} \to \mathfrak{A}$ be a bounded linear operator of spectral radius $r(T) \leq 1$ on real or complex Banach space \mathfrak{A} , let $\mathfrak{M} = \{x \in \mathfrak{K}: Tx = x\}$ be the invariant vectors of T, and let $\mathfrak{N} = \{\xi \in \mathfrak{K}^*: T^*\xi = \xi\}$ be the invariant vectors of the adjoint operator $T^*: \mathfrak{K}^* \to \mathfrak{K}^*$. Robert Sine has shown [4] that in the case $||T|| \leq 1$, the condition $\langle \mathfrak{M}$ separates $\mathfrak{N} \rangle$ is necessary and sufficient for strong convergence of the ergodic averages $(1/n)(I+T+\cdots+T^{n-1})x, x \in \mathfrak{K}$. We show here that $\langle \mathfrak{M}$ separates $\mathfrak{N} \rangle$ is necessary and sufficient for strong convergence of any bounded regular invariant summability method, and that the limiting operator, a projection onto \mathfrak{M} , is independent of the method when it exists.
- 2. Mean ergodic theorem. Let \mathscr{C}_1 be the set of power series $p(z) = \sum_{i=0}^{\infty} p_i z^i$ which have radius of convergence greater than 1 and are such that $\sum_{i=0}^{\infty} p_i z^i$ = 1. With $\mathfrak{B}(\mathfrak{K})$ the bounded linear operators on \mathfrak{K} , each $p \in \mathscr{C}_1$ determines $p(T) = \sum_{i=0}^{\infty} p_i T^i \in \mathfrak{B}(\mathfrak{K})$, the series converging in the uniform operator topology. We put $\mathscr{C}_1 = \{p(T): p \in \mathscr{C}_1\}$, noting that if $P \in \mathscr{C}_1$ then Px = x, $x \in \mathfrak{M}$.

We introduce further $\mathfrak{P}_1(M) = \{P \in \mathfrak{P}_1 : \|P\| \le M\}$ for $1 \le M < \infty$, and also $\mathfrak{P}_1(M,\varepsilon) = \{P \in \mathfrak{P}_1(M) : \|(I-T)P\| \le \varepsilon\}$, $1 \le M < \infty$, $\varepsilon > 0$. Our basic assumption will be:

(UI) There exists $1 \le M_0 < \infty$ such that $\mathcal{P}_1(M_0, \varepsilon) \ne \emptyset$ for each $\varepsilon > 0$.

In the terminology of Day [1], this is the assertion that \mathfrak{I}_1 contains bounded sequences $\{P_n\}$ converging uniformly to invariance, i.e., $\lim_n ||P_n - TP_n|| = 0$. In §3 we give various sufficient conditions for (UI).

Let $\overline{\mathcal{P}}_1$ be the closure of $\mathcal{P}_1 \subset \mathfrak{B}(\mathfrak{X})$ in the strong operator topology (SOT), and let $\overline{\mathcal{P}}_1(M, \varepsilon)$ be the SOT closure of $\mathcal{P}_1(M, \varepsilon)$.

THEOREM 1. If (UI) holds then (i) is equivalent to (ii):

Presented to the Society, January 26, 1975; received by the editors March 1, 1975. AMS (MOS) subject classifications (1970). Primary 47A35.

Key words and phrases. Mean ergodic theorem.

122 S. P. LLOYD

(1) (i) M separates N;

(ii) There exists a projection $Q \in \overline{\mathbb{P}}_1$ onto \mathfrak{N} , necessarily unique, and $\bigcap_{\varepsilon>0}\overline{\mathbb{P}}_1(M,\varepsilon) = \{Q\}$ for any $M \geq M_0$.

PROOF. We show first that $\overline{\mathcal{P}}_1$ contains at most one projection Q onto \mathfrak{N} . Suppose $\lim_{\nu} P_{\nu} = Q$ in SOT with $\{P_{\nu}\} \subset \mathcal{P}_1$ a generalized sequence and Q a projection onto \mathfrak{N} . Such a projection commutes with T, from

$$Q = TQ = T \lim_{\nu} P_{\nu} = \lim_{\nu} TP_{\nu} = \lim_{\nu} P_{\nu} T = QT,$$

the limits being SOT. If $\lim_{\nu} P_{\nu}' = Q'$ and $\lim_{\nu} P_{\nu}'' = Q''$, then $Q' = Q'P_{\nu}'' = Q'Q'' = Q''$, whence Q is unique in $\overline{\mathfrak{P}}_1$ if it exists.

(ii \Rightarrow i) Let us prove that if projection Q exists then the adjoint projection $Q^*: \mathfrak{K}^* \to \mathfrak{K}^*$ is onto \mathfrak{N} . From Q = TQ = QT follows $Q^* = Q^*T^* = T^*Q^*$, so that Q^* has range in \mathfrak{N} . If $Q = \lim_{\nu} P_{\nu}$ with $\{P_{\nu}\} \subset \mathfrak{P}_1$ and if $x \in \mathfrak{K}, \xi \in \mathfrak{N}$, then

$$(x,\xi) = (x, P_{\nu}^* \xi) = (P_{\nu} x, \xi) = (Qx, \xi) = (x, Q^* \xi),$$

giving $Q^*\xi = \xi, \xi \in \mathfrak{N}$, whence Q^* is onto \mathfrak{N} .

Suppose $0 \neq \xi \in \mathfrak{N}$, and let $x \in \mathfrak{N}$ be such that $(x,\xi) \neq 0$. Then $(Qx,\xi) = (x,Q^*\xi) = (x,\xi) \neq 0$, so that $Qx \in \mathfrak{N}$ separates ξ and 0. That is, \mathfrak{N} separates \mathfrak{N} .

(i \Rightarrow ii) Let functional $\Phi(x)$, $x \in \mathcal{K}$, be defined by

$$\Phi(x) = \lim_{\varepsilon \downarrow 0} \sup_{P',P''} \{ \|P'x - P''x\| \colon P', P'' \in \mathcal{P}_1(M,\varepsilon) \}, \qquad x \in \mathcal{K},$$

for any fixed $M \ge M_0$. The properties

- (a) $\Phi(x + y) \leq \Phi(x) + \Phi(y), x, y \in \mathfrak{X},$
- (b) $\Phi(cx) = |c|\Phi(x), x \in \mathcal{X}$, scalar c,
- (c) $0 \le \Phi(x) \le 2M||x||, x \in \mathfrak{X}$,
- (d) $\Phi(x) = 0, x \in \mathfrak{N}$,
- (e) $\Phi(x Tx) = 0, x \in \mathfrak{A},$

are straightforward or obvious; e.g. for (e) we use

$$||P'(x - Tx) - P''(x - Tx)|| \le [||(I - T)P'|| + ||(I - T)P''||]||x||$$

$$\le 2\varepsilon ||x||, \quad x \in \Re \text{ and } P', P'' \in \Re_1(M, \varepsilon).$$

Let Φ^0 denote the set of all $\xi \in \mathfrak{R}^*$ satisfying $(x,\xi) \leq \Phi(x), x \in \mathfrak{R}$; by the Hahn-Banach theorem, $\Phi(x) = \max_{\xi} \{(x,\xi) : \xi \in \Phi^0\}, x \in \mathfrak{R}$. Properties (d), (e) of Φ yield properties: (d*) $\xi \in \mathfrak{R}^{\perp}$; (e*) $\xi \in \mathfrak{R}$, for the $\xi \in \Phi^0$, where $\mathfrak{R}^{\perp} \subset \mathfrak{R}^*$ is the annihilator of \mathfrak{R} . Now, condition (1)(i) is the assertion $\mathfrak{R}^{\perp} \cap \mathfrak{R} = 0$; from $\Phi^0 \subset \mathfrak{R}^{\perp} \cap \mathfrak{R}$ just shown follows then $\Phi^0 = 0$ and hence $\Phi = 0$.

Let $\{\eta_n\}$ be any sequence of positive numbers such that $\lim_n \eta_n = 0$, let P_n for each n be an arbitrarily chosen member of $\mathcal{P}_1(M, \eta_n)$, and put $\varepsilon_n = \max_{r \geq n} \eta_r$. Any such sequence $\{P_n\}$ is SOT Cauchy when $\Phi = 0$, from

$$\lim_{n \to \infty} \sup_{n \le r < s} \|P_r x - P_s x\|$$

$$\leq \lim_{n \to \infty} \sup_{P', P''} \{ \|P' x - P'' x\| \colon P', P'' \in \mathcal{P}_1(M, \varepsilon_n) \}$$

$$= \lim_{\epsilon \downarrow 0} \sup_{P', P''} \{ \|P' x - P'' x\| \colon P', P'' \in \mathcal{P}_1(M, \varepsilon) \}$$

$$= \Phi(x) = 0, \quad x \in \mathfrak{K};$$

we have used the nested property of the $\{\mathcal{P}_1(M, \varepsilon): \varepsilon > 0\}$. The SOT limit $Q = \lim_n P_n$ is the projection sought. \square

We remark that when $\mathfrak{N}=0$ the result takes the form: given (UI), $0\in\overline{\mathcal{P}}_1$ iff $\mathfrak{N}=0$.

3. Condition (UI). Consider the familiar ergodic averages $A_n = (1/n) \sum_{i=0}^{n-1} T^i$, $n \ge 1$, for which $(I-T)A_n = (I-T^n)/n$. If these satisfy $||A_n|| \le M_0 < \infty$, $n \ge 1$, and if $\lim \inf_n ||T^n||/n = 0$, then (UI) holds, clearly. A fortiori, (UI) holds when $||T^n|| \le M_0 < \infty$, $n \ge 1$; this case is covered by the arguments of [4], although Sine assumes $||T|| \le 1$.

The resolvent of T is given by $R_{\lambda} = \sum_{i=0}^{\infty} T^i / \lambda^{i+1}$ when $|\lambda| > 1 \ge r(T)$, the series converging in the uniform operator topology. If we introduce $P_{\lambda} = (\lambda - 1)R_{\lambda}$ for $|\lambda| > 1$, then $P_{\lambda} \in \mathcal{P}_1$, and it is easily verified that $(I - T)P_{\lambda} = (\lambda - 1)(I - P_{\lambda})$. Thus if the $\{P_{\lambda}\}$ satisfy

$$\lim_{\lambda \to 1; |\lambda| > 1} \inf_{\|P_{\lambda}\| < M_0 < \infty,$$

then (UI) holds for such M_0 .

In the other direction, suppose T has index $1 < \mu < \infty$ at $\lambda = 1$. (The index of T at $\lambda = 1$ is the least integer $\mu \ge 0$ with the property: all vectors $x \in \Re$ satisfying $(I - T)^{\mu+1}x = 0$ satisfy also $(I - T)^{\mu}x = 0$ [2, p. 556].)

Theorem 2. If T has index $1 < \mu < \infty$ at $\lambda = 1$ then (UI) cannot hold and $\overline{\mathcal{P}}_1$ contains no projection onto \mathfrak{M} .

PROOF. If a generalized sequence $\{P_{\nu}\}\subset \mathcal{P}_1$ is SOT convergent to a projection $Q\in \overline{\mathcal{P}}_1$ onto \mathfrak{N} , then, necessarily,

$$\lim_{\nu} \|(I-T)P_{\nu}x\| = \|(I-T)Qx\| = 0, \quad x \in \mathfrak{X}.$$

If T has index $1 < \mu < \infty$ at $\lambda = 1$, then unit vectors $x_1, x_2 \in \mathcal{X}$ exist such that $Tx_1 = x_1$, $Tx_2 = x_2 + cx_1$ for some c > 0. From

$$(I-T)T^{i}x_{2} = T^{i}(I-T)x_{2} = T_{i}(-cx_{1}) = -cx_{1}, \quad i \ge 0,$$

follows $(I-T)Px_2 = -cx_1$, $P \in \mathcal{P}_1$. We have then $||(I-T)Px_2|| = c > 0$, $P \in \mathcal{P}_1$, showing that no Q exists, and $||(I-T)P|| \ge c > 0$, $P \in \mathcal{P}_1$, showing that (UI) fails. \square

For the same x_1 , x_2 an easy calculation gives $P_{\lambda}x_2 = x_2 + cx_1/(\lambda - 1)$, whence

$$||P_{\lambda}|| \ge |c/|\lambda - 1| - 1|, \quad |\lambda| > 1,$$

= $O(1/|\lambda - 1|), \quad |\lambda| > 1 \text{ and } \lambda \to 1,$

when T has index $1 < \mu < \infty$ at $\lambda = 1$. Thus if some condition on $||P_{\lambda}||$, $|\lambda| > 1$, is necessary and sufficient for (UI) then it lies between (2) and

$$||P_{\lambda}|| = o(1/|\lambda - 1|), \quad |\lambda| > 1, \lambda \to 1.$$

Apart from changes in variable, the following result is the (C, α) generalization of Theorem 1' of [3]. For $\alpha \neq -1, -2, \ldots$ the (C, α) averages $A_n^{(\alpha)}(T)$ of $\{T^n\}$ have as generating function

$$\left(1-\frac{1}{\lambda}\right)^{-\alpha}R_{\lambda}(T)=\sum_{n=0}^{\infty}\frac{\alpha+n!}{\alpha!}\frac{A_{n}^{(\alpha)}(T)}{\lambda^{n+1}}; \quad |\lambda|>1,$$

so that

$$A_n^{(\alpha)}(T) = \frac{\alpha! \, n!}{\alpha + n!} \, \frac{1}{2\pi i} \int \lambda^n \left(1 - \frac{1}{\lambda}\right)^{-\alpha R_\lambda} (T) \, d\lambda, \qquad n \ge 0,$$

the contour being a large circle around the origin, say.

For λ in the resolvent set of T let $T_{\lambda} \in \mathfrak{B}(\mathfrak{X})$ be defined by

$$T_{\lambda} = P_{\lambda} T = (\lambda - 1)(\lambda I - T)^{-1} T = \lambda P_{\lambda} - (\lambda - 1)I.$$

The spectrum of T_{λ} is $\sigma(T_{\lambda}) = \{(\lambda - 1)\lambda'/(\lambda - \lambda'): \lambda' \in \sigma(T)\}$, and we find $1 - \lambda \notin \sigma(T_{\lambda})$ provided $\lambda \neq 0$, 1. Thus the inversion formula

$$T = \lambda T_{\lambda} [(\lambda - 1)I + T_{\lambda}]^{-1}$$

is valid for $\lambda \neq 0$, 1 in the resolvent set of T; moreover, $r(T_{\lambda}/(1-\lambda)) < 1$ if $|\lambda| > 2$. Note that the relations between T_{λ} and T admit the involution $T \leftrightarrow T_{\lambda}$, $\lambda \leftrightarrow 1 - \lambda$.

THEOREM 3. For any fixed $\alpha \ge 0$, $1 \le M < \infty$, the conditions

(i)
$$||A_n^{(\alpha)}(T)|| \leq M$$
, $n \geq 0$,

(3)
$$(ii) \|A_n^{(\alpha)}(T_\lambda)\| \leq M \left| \frac{\lambda - 1}{|\lambda| - 1} \right|^{\alpha + n}, \quad n \geq 0, |\lambda| > 1,$$

are equivalent. When they are satisfied, (UI) holds and

(4)
$$||P_{\lambda}(T)|| \leq M|(\lambda - 1)/(|\lambda| - 1)|^{\alpha+1}, \quad |\lambda| > 1$$

Proof. In

$$A_n^{(\alpha)}(T_\lambda) = \frac{\alpha! \, n!}{\alpha + n!} \, \frac{1}{2\pi i} \int \mu^n \left(1 - \frac{1}{\mu}\right)^{-\alpha} R_\mu(T_\lambda) \, d\mu, \qquad n \ge 0,$$

we have

$$R_{\mu}(T_{\lambda}) = \frac{1}{\mu I - T_{\lambda}} = \frac{1}{\lambda + \mu - 1} \left\{ I + \frac{\lambda(\lambda - 1)}{\lambda \mu I - (\lambda + \mu - 1)T} \right\};$$

the change of variable $\xi = \lambda \mu / (\lambda + \mu - 1)$ gives

$$A_{n}^{(\alpha)}(T_{\lambda})$$

$$= \frac{\alpha! \, n!}{\alpha + n!} \left(1 - \frac{1}{\lambda} \right)^{\alpha + n} \frac{1}{2\pi i} \int \left[\frac{\xi}{1 - (\xi/\lambda)} \right]^{n} \left(1 - \frac{1}{\xi} \right)^{-\alpha} \left[\frac{I}{\xi - \lambda} + R_{\xi}(T) \right] d\xi$$

$$= \left(1 - \frac{1}{\lambda} \right)^{\alpha + n} \sum_{j=0}^{\infty} \frac{\alpha + n - 1 + j!}{\alpha + n - 1! \, j! \, \lambda^{j}} \left\{ \frac{\alpha j I}{(\alpha + n)(j + n)} + \left[1 - \frac{\alpha j}{(\alpha + n)(j + n)} \right] A_{n+j}^{(\alpha)}(T) \right\},$$

$$n \ge 0, |\lambda| > 1,$$

with $1 < |\xi| < |\lambda|$ on the contour. If $\alpha \ge 0$ then $0 \le \alpha/(\alpha + n) \cdot j/(j + n)$ ≤ 1 in the last expression, so if (3)(i) holds, then

$$||A_n^{(\alpha)}(T_\lambda)|| \le \left|1 - \frac{1}{\lambda}\right|^{\alpha+n} \left(1 - \frac{1}{|\lambda|}\right)^{-\alpha-n} M$$
$$= \left|\frac{\lambda - 1}{|\lambda| - 1}\right|^{\alpha+n} M, \quad |\lambda| > 1,$$

which is (3)(ii).

In the same way, using the bound (3)(ii) in the inversion formula

$$A_{n}^{(\alpha)}(T) = \left(1 - \frac{1}{\lambda}\right)^{-\alpha - n}$$

$$\cdot \sum_{j=0}^{\infty} \frac{\alpha + n - 1 + j!}{\alpha + n - 1! j! (1 - \lambda)^{j}} \left\{ \frac{\alpha j I}{(\alpha + n)(j + n)} + \left[1 - \frac{\alpha j}{(\alpha + n)(j + n)}\right] A_{n+j}^{(\alpha)}(T_{\lambda}) \right\},$$

$$n \ge 0, |\lambda| > 2,$$

gives

$$||A_{\alpha}^{(\alpha)}(T)|| \leq [|\lambda|/(|\lambda|-2)]^{\alpha+n}M, \qquad n \geq 0, |\lambda| > 2;$$

we let $|\lambda| \to \infty$ to obtain (3)(i).

If conditions (3) are satisfied then

$$||R_{\lambda}(T)|| \leq \left[\frac{|\lambda-1|}{|\lambda|}\right]^{\alpha} \left[1 - \frac{1}{|\lambda|}\right]^{-\alpha-1} \frac{M}{|\lambda|} = \frac{|\lambda-1|^{\alpha}M}{(|\lambda|-1)^{\alpha+1}}, \quad |\lambda| > 1,$$

which is (4). For a (UI) sequence we may take $\{P_{\lambda_n}\}$ for some $\{\lambda_n \downarrow 1\}$, or $\{A_n^{(\alpha+1)}(T)\}$, since

$$A_n^{(\alpha+1)}(T) = \sum_{j=0}^n \frac{\alpha+j!}{\alpha!j!} A_j^{(\alpha)}(T) / \sum_{j=0}^n \frac{\alpha+j!}{\alpha!j!},$$

$$(I-T)A_n^{(\alpha+1)}(T) = (\alpha+1)/(n+1)[I-A_{n+1}^{(\alpha)}(T)], \qquad n \ge 0. \quad \Box$$

126 S. P. LLOYD

Note the slight strenghtening of the result of the first paragraph: if $||A_n^{(1)}(T)|| \le M < \infty$, $n \ge 0$, then (UI) holds, with no condition on $||T^n||/n$. All that is involved in Theorem 3 is $||T - T_{\lambda}|| = O(1/|\lambda|)$ at $|\lambda| \to \infty$, of course; the interesting part at $\lambda \to 1$ has no force.

4. The adjoint projections. Recall that a generalized sequence $\{\Gamma_{\nu}\}\subset \mathfrak{B}(\mathfrak{K}^{*})$ is W* OT convergent to $\Gamma\in \mathfrak{B}(\mathfrak{K}^{*})$ iff $\lim_{\nu}(x,\Gamma_{\nu}\xi)=(x,\Gamma\xi)$ for each $x\in\mathfrak{K},\,\xi\in\mathfrak{K}^{*}$; and further, that bounded W* OT closed sets are W* OT compact. Let $\mathfrak{P}_{1}^{*}(M,\varepsilon)\subset \mathfrak{B}(\mathfrak{K}^{*})$ be the set of adjoints of members of $\mathfrak{P}_{1}(M,\varepsilon)$, and let $\overline{\mathfrak{P}}_{1}^{*}(M,\varepsilon)$ denote the W* OT closure of $\mathfrak{P}_{1}^{*}(M,\varepsilon)$. If (UI) holds and $M\geq M_{0}$, then $\{\overline{\mathfrak{P}}_{1}^{*}(M,\varepsilon)\colon \varepsilon>0\}$ is a nested family of nonempty convex W* OT compact sets; the intersection $\mathfrak{S}(M)=\bigcap_{\varepsilon>0}\overline{\mathfrak{P}}_{1}^{*}(M,\varepsilon)$, necessarily nonempty, consists of projections onto \mathfrak{N} (with $\mathfrak{S}(M)=\{0\}$ if $\mathfrak{N}=0$). The members of $\mathfrak{S}(M)$ commute with T^{*} and satisfy $\Gamma'\Gamma''=\Gamma''$, Γ' , $\Gamma''\in\mathfrak{S}(M)$, clearly. If the projection $Q\in\overline{\mathfrak{P}}_{1}$ onto \mathfrak{N} exists, then it satisfies $Q^{*}\Gamma=Q^{*}$, $\Gamma\in\mathfrak{S}(M)$. For, suppose $\lim_{\nu}P_{\nu}^{*}=\Gamma\in\mathfrak{S}(M)$ in W* OT; then

$$(x, Q^* \Gamma \xi) = (Qx, \Gamma \xi) = \lim_{\nu} (Qx, P_{\nu}^* \xi) = \lim_{\nu} (P_{\nu} Qx, \xi)$$
$$= (Qx, \xi) = (x, Q^* \xi), \qquad x \in \mathcal{K}, \xi \in \mathcal{K}^*.$$

This and $Q^*\Gamma = \Gamma$ give $\Gamma = Q^*$, which is to say, $\mathbb{S}(M)$ is the singleton $\mathbb{S}(M) = \{Q^*\}$ when Q exists. The author is not able to prove the following plausible converse: If $\mathbb{S}(M) = \{\Gamma\}$ is a singleton, then $\Gamma = Q^*$ for $Q \in \overline{\mathcal{P}}_1$ a projection onto \mathfrak{N} .

REFERENCES

- 1. Mahlon M. Day, Amenable semigroups, Illinois J. Math. 1 (1957), 509-544. MR 19, 1067.
- 2. Nelson Dunford and Jacob T. Schwartz, *Linear operators*. I: General theory, Pure and Appl. Math., vol. 7, Interscience, New York, 1958. MR 22 #8302.
- 3. A. G. Gibson, A discrete Hille-Yosida-Phillips theorem, J. Math. Anal. Appl. 39 (1972), 761-770. MR 47 #881.
- 4. Robert C. Sine, A mean ergodic theorem, Proc. Amer. Math. Soc. 24 (1970), 438-439. MR 40 #5825.

BELL LABORATORIES, MURRAY HILL, NEW JERSEY 07974