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INTEGRAL CLOSURES OF UNCOUNTABLE
COMMUTATIVE REGULAR RINGS

L. LIPSHITZ!

ABSTRACT. Necessary and sufficient conditions are given for a commutative
regular ring to have a prime integrally closed extension.

In this paper we give necessary and sufficient conditions for a commutative
regular ring R to have a prime integral closure. 1n [1] it was shown that for a
commutative regular ring R to have a prime integral closure, it is necessary
that every polynomial p(x) in R[x] have an unambiguous factor (see definitions
below), and that in the case that R is countable this condition is also sufficient.
An example was given to show that this condition is not sufficient if R is
uncountable. It was also seen in [1] that if R has a prime integral closure, then
this closure is unique. I would like to thank Bonnie Gold and Gadi Moran for
helpful conversations during the preparation of this paper.

DEFINITIONS. (1) K¢p is the theory of commutative regular rings;

Keg = Kcg U {every monic polynomial has a root}

is the theory of integrally closed commutative regular rings.

(2) If R E K¢g and p(x) € R[x], we call p(x) unambiguous if on no nonzero
idempotent e is it the case that p(x) = u(x)v(x) with (u(x),v(x)) = 1 one. (An
identity holds on e if it holds in Re.) This condition is equivalent to p(x) being
a power of an irreducible polynomial at every point of Sk, the Stone space of
R (= Spec (R)).

T = Kcg U {every polynomial has an unambiguous factor}.

(3) If RF Kcp and R C Rk Kgg, we call R a prime extension of R to a
model of Kgz, or an (in fact the) integral closure of R if whenever
f: R = R, F Kgg is an embedding, f extends to an embedding of R into R,. If
we drop the condition that R  Kzx we call R a prime extension of R.

(4) If RE Kcg and R C R E Kcg, we call R sequentially prime over R if
R = U,<)R, with Ry = R, Ry = U,sR, for limit ordinals § < A and
R,+1 = R,la,], with a, a root of an unambiguous polynomial p,(x) € R,[x].
(In other words, R can be realized as a sequence of one element extensions,
each prime over the previous ones-see [1].)
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(5) Let R F Kcg. We call R thin if there is a set 9 C R;[x], where R, is the
inseparable closure of R-see [1], such that (a) every polynomial p(x) € ¥ is
normal (in the sense that adjoining one root of p(x) splits p(x) into linear
factors) and unambiguous. (b) If R” D R splits every polynomial in & and is
generated over R by the roots of these polynomials, then R’ F Kzg. (c) Each
p(x) € P is defined and monic on some idempotent e,(eR) and p(x) = p(x)e, .
(d) If A C 9 is countable, there is a countable B with 4 C B C 9 such that
if R’ results from R by adjoining roots of all the polynomials p(x) € B (in the
sequentially prime way-see [1]), then in R’[x] every polynomial p(x) € 9
factors on e, into unambiguous monic factors. We shall call such a @ a thin
basis for R. _ .

We shall show that if R is prime over R, then R is sequentially prime over
R and consequently that R has a prime integral closure if and only if R is thin.

REMARK. In definition (5) above the only important conditions are (b) and
(d); i.e. if we have a set of polynomials which satisfies (b) and (d), then we can
construct a set satsifying (a)-(d). Notice also that if R is thin,then R £ T.

From now on, when R k T, we shall assume that R is inseparably closed (i.e.
every purely inseparable polynomial in R[x] has a root). This involves no loss
of generality since the inseparable closure R; of R always exists and is prime
and in fact sequentially prime over R. If R is inseparably closed instead of
unambiguous polynomials, we can talk of irreducible polynomials (see [1]).
Also all irreducible polynomials are then separable and, consequently, we
have the primitive element theorem holding.

Let Rk T and let @ = { p(x) € R[x]|p(x) is normal, monic and unambig-
uous}. Let

R* = I1 Rxlp € 9]

where the product is over all isomorphism types of R[{x,|p € 9}] such that
p(x,) = 0 for all p € 9. Let R be the subring of R* generated by the
sequences x, = {x,,};es> over R. It follows from Lemma 1 of [2] or Lemma
2 of [1] that R is a commutative regular ring. It is not hard to see that
RE Kzz (R is algebraically closed at each point of S % = Spec (R) and since
S is compact, R is integrally closed). R is a free closure of R in the sense that
if R C R, F Kgg, then there is a homomorphism of R into R, over R-in fact
one of the projections will do.

Suppose that R has a prime integral closure R. Let »: R — R be a fixed
embedding over R. For each 8 € R there is a finite set Xz C {x,|p € ¥}
C R such that »(B) € Rlx,|x, € Xg]. If A C R, define 4’ C R as follows:
Ag = A, A;4y = {all roots in R of polynomials p(x) € R[x] such that x,
€ UgeyXpland A" = U, 4;. Notice that if p(x) € R[x], then all the roots
of p(x) in R are generated by a finite number of roots over R, since Sg = Sg.
It follows that if 4 < &), then R[A’] is countably generated over R and, in
fact, if A C B with B — A4 countable, then R[B’] is countably generated over
R[A].

Let R = R[{x,la < A}] where each x, is a root of a polynomial p(x) € 9.
Define 4, = {x,|y < a}. R, = R[4,] C R and R, = R[{x, € Rla is a root
of p(x) for some a € R,}] C R.
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It is clear that R, = »~*(R,), that Ry = U,sR, for limit ordinals § < A,
that Ry, = R and that R, is countably generated over R, .

LemMa 1. (i) R, is prime over R.
(i) Ra+1 is prime over R, .
(iti) R, is sequentially prime over R, .

PROOF. (i) is trivial.

(i) Since R, is free over R there is a projection u: R, — R, over R. It is easy
to see that u o » is an automorphism of R,. Let ¢ = Ker (1) C R, and let
§ = ¢'R. Then since R and R, are models of Kcg, 9N R, = s, Also

u: R /9' — R, is an isomorphism. It is easy to see that R'/g is free over
R = R,/¢ (m the same sense that R is free over R). Let R, C R; F Kgz.
Then there is a homomorphism g, : R/$ > R, over R, so that y; o »: R > R,
is an embedding. Hence R (and thus R, ) is prime over R,. Hence, since R, ;
is countably generated over R,, by the remark following Theorem 2 of [1],
R, is sequentially prime over Ra, and (ii) and (iii) are proved.

COROLLARY. If R is a prime integral closure of R (F Kcg), then R s
sequentially prime over R.

ProoF. The results of [1] show that R F T. The inseparable closure R; of R
is always sequentially prime over R and R; k T so the above construction and
Lemma 1 show that R is sequentially prime over R,.

LEMMA 2. If R is the prime integral closure of R, then R is thin.

ProoF. Let R = U,)\R, where R,,; = R,la,]- and p,(a,) = 0 with
Po(x) € R,[x] irreducible. Let p}¥(x) € R[x] be the unique irreducible poly-
nomial in R[x] such that p,(x)|p}(x). Without loss of generality we may
assume that p,(x) and p¥(x) are normal (see the proof of Lemma 1). A set
A C R — Ris called downwardly closed if: (i) if a € R[A] and at some point
z € S the first time a(z) occurs in the sequence R,/z is at stage a with a(z)
being a combination over R of a,, ..., a, say, then a, € R[A] for i =1,
..., n;and (ii)) 4 = A’. In the proof of Lemma 1 we saw that if 4 = A4’, then
R[A] E T, so if A is downwardly closed then R[A4] F T. For each downwardly
closed A C R let Y be a factoring of p} into irreducible factors in R[A4]. Call
two such factorings Y| and Y essentially different if at some point z € Sg
they are different. We now claim that for fixed « there are only finitely many
essentially different Y$’s (with 4 downwardly closed). This follows from the
fact that p}, factors only finitely often in the well-ordered sequence I_(y since
each R, F T, and that S is compact. We leave the details to the reader. For
each a choose idempotents e,;, i = 1, ..., n, such that for any downwardly
closed 4 each pj (x)e,; factors into monic irreducible factors on e, for each
i. Let

9 = {pF(Xegla < Ni=1,...,n,).

Certainly 9 satisfies all the conditions of definition (5) except perhaps (d). Let
A C 9 with 4 = ¥, and let B, be the downward closure of A (defined as
follows: For each a € R[4A] — R and each z € Sy, adjoin to 4 the elements
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a,,...,a, defined above. Since Sp is compact, this will only involve
cons1der1ng a finite number of z’s. Call the new set D. Let 4, = D’. Obtain
A;,, from 4; in the same way that 4, was obtained from A. The downward
closure of A is Ujc,4;). We must show that there is a countable subset
B C B such that adjoining roots for all polynomials in B (in the prime way)
causes every polynomial in B, to split. Since R is separable over R for each
{a;,...,a,} C R there are essentially only finitely many regular rings between
R and R[al ,...,a,]. By this we mean that there is a finite set of regular rings
R;,j = , k, with R; C Rla,...,a,] and R; finitely generated over R
such that at each point z E Sgr,if R, denotes the ﬁeld (i.e. stalk) above z, then
all the fields between R, and R[al, ...,a,], occur among the R;,. For each
{a1,...,a,} C A we can look at the rings R; defined as above and choose a
finite set of generators 4; for R; over R. Let A be the union of all these A4; for
all finite subsets {a;,...,a,} of 4. Then A4 is countable and in obtaining D
from A as above instead of considering all elements of R[4] — R we need only
consider all elements of 4. Call this set D. Let A; = D’ etc.and B = U, 4,;.
Then B is countable and downwardly closed. In fact R[B]
= R [downward closure of 4]. From the definition of 9 it is clear that B has
the required properties.

LeMMA 3. If R C Ry C R, with Ry F T and R; (j = 1,2) prime over R then
R, is prime over R,.

PRrOOF. Let R, be constructed from R, as above. We then have

R, C R,
R,

PrOOF. Let ¥ be a thin basis for R. Let 4 C 9. Then there is a B
(4 CBCQP) with 4+ 8 = B+, so that every p € @ factors in Ry
(obtained by adjoining roots of polynomials in B) into the product of
irreducible monic factors on e,

We prove by induction on A that if 4 C 9, then there is a sequentially
prime extension R, of R which splits every polynomial in 4 and with R, k T,
and such that in R,[x] every polynomial p € 9 factors into the product of
monic irreducible factors on e,. If 4 is countable this is trivial. Suppose the
assertion is true for all cardinals < 4. Let B correspond to A as above. Write
A = Uycp4, with 45 = U, 54, for limit ordinals § < A, 4,,; D A4, and
A, < 4 for all a < A. Let B = Ua<a B, with B, corresponding to A as
above Then by induction Rp_exists for each a < )\ It is clear that Rp_ I: T
(since in R B, EVery polynom1a1 in 9 factors into a product of monic irreducible
factors) for each a < A. Thus by Lemma 3, Rp ., is prime over Rp and hence
Rp = Uu<)\Rp, is prime over R.

From Corollary 1 and Lemma 4 we immediately get the

R

THEOREM. If R E K then R has a prime integral closure if and only if R is
thin.
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where ¢ is an embedding of R, into R, over R which exists because R, is prime
over R. This diagram need not commute, but we do have »(r) = ¢(r) for
r € R. We shall show that there exists an automorphism y of R, over R such
that the above diagram with ¢ replaced by ¢! o ¢ does commute. The lemma
then follows from the freeness properties of R, over R,.

ﬁ, is generated by the X, p € ®, over R|. Fora € Rletag;,i =1,...,n,,
denote the conjugates of a over R, and for p(x) € @ let p;(x), i = 1,..., n,,
denote the conjugates of p(x) over R. Notice that if p(x) € @, then p;(x) € @,
and since R, k T, (p;(x),p;(x)) = 1 fori # j.

For a € R, we have ¢(a) = X a;e; where the ¢; are disjoint idempotents of
R, and I e; = 1. Similarly we have ¢(p(x)) = 32, pi(x)e;.

Define ¢: R, — R, as follows:

Wa) = @or'(a) fora € u(R)),
o) = % xper

It is obvious that ¢ is a homomorphism because of the freeness properties of
R, over R,. y is locally one-to-one (i.e. on each stalk) and hence one-to-one.
Also x, € Range (¥) so ¢ is onto. Therefore y is an automorphism with the
required properties.

LEMMA 4. If R is thin, then R has a prime integral closure.

REMARK. The condition that R be thin is not a first order condition since
every countable model of T is thin. Hence for R uncountable the necessary
and sufficient condition for R to have a prime integral closure is not first order,
while for countable R it is.
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