INTEGRAL CLOSURES OF UNCOUNTABLE COMMUTATIVE REGULAR RINGS

L. LIPSHITZ¹

ABSTRACT. Necessary and sufficient conditions are given for a commutative regular ring to have a prime integrally closed extension.

In this paper we give necessary and sufficient conditions for a commutative regular ring R to have a prime integral closure. In [1] it was shown that for a commutative regular ring R to have a prime integral closure, it is necessary that every polynomial p(x) in R[x] have an unambiguous factor (see definitions below), and that in the case that R is countable this condition is also sufficient. An example was given to show that this condition is not sufficient if R is uncountable. It was also seen in [1] that if R has a prime integral closure, then this closure is unique. I would like to thank Bonnie Gold and Gadi Moran for helpful conversations during the preparation of this paper.

DEFINITIONS. (1) K_{CR} is the theory of commutative regular rings;

$$K_{\overline{CR}} = K_{CR} \cup \{\text{every monic polynomial has a root}\}$$

is the theory of integrally closed commutative regular rings.

(2) If $R
otin K_{CR}$ and p(x)
otin R[x], we call p(x) unambiguous if on no nonzero idempotent e is it the case that p(x) = u(x)v(x) with (u(x), v(x)) = 1 on e. (An identity holds on e if it holds in Re.) This condition is equivalent to p(x) being a power of an irreducible polynomial at every point of S_R , the Stone space of R (= Spec (R)).

$$T = K_{CR} \cup \{\text{every polynomial has an unambiguous factor}\}.$$

- (3) If $R \models K_{CR}$ and $R \subset \overline{R} \models K_{\overline{CR}}$, we call \overline{R} a prime extension of R to a model of $K_{\overline{CR}}$, or an (in fact the) integral closure of R if whenever $f: R \to R_1 \models K_{\overline{CR}}$ is an embedding, f extends to an embedding of \overline{R} into R_1 . If we drop the condition that $\overline{R} \models K_{\overline{CR}}$ we call \overline{R} a prime extension of R.
- (4) If $R \models K_{CR}$ and $R \subset \overline{R} \models K_{CR}$, we call \overline{R} sequentially prime over R if $\overline{R} = \bigcup_{\alpha < \lambda} \overline{R}_{\alpha}$ with $R_0 = R$, $R_{\delta} = \bigcup_{\alpha < \delta} R_{\alpha}$ for limit ordinals $\delta < \lambda$ and $R_{\alpha+1} = R_{\alpha}[a_{\alpha}]$, with a_{α} a root of an unambiguous polynomial $p_{\alpha}(x) \in R_{\alpha}[x]$. (In other words, \overline{R} can be realized as a sequence of one element extensions, each prime over the previous ones—see [1].)

Received by the editors February 28, 1975 and, in revised form, June 21, 1975.

AMS (MOS) subject classifications (1970). Primary 13L05, 13B20; Secondary 02H15.

Key words and phrases. Commutative regular rings, integrally closed rings, prime model extensions.

¹ This research supported by NSF grant GP43749.

20 L. LIPSHITZ

(5) Let $R
otin K_{CR}$. We call R thin if there is a set $\mathfrak{P} \subset R_i[x]$, where R_i is the inseparable closure of R-see [1], such that (a) every polynomial $p(x) \in \mathfrak{P}$ is normal (in the sense that adjoining one root of p(x) splits p(x) into linear factors) and unambiguous. (b) If $R' \supset R$ splits every polynomial in \mathfrak{P} and is generated over R by the roots of these polynomials, then $R' \models K_{\overline{CR}}$. (c) Each $p(x) \in \mathfrak{P}$ is defined and monic on some idempotent $e_p(\varepsilon R)$ and $p(x) = p(x)e_p$. (d) If $A \subset \mathfrak{P}$ is countable, there is a countable B with $A \subset B \subset \mathfrak{P}$ such that if R' results from R by adjoining roots of all the polynomials $p(x) \in B$ (in the sequentially prime way-see [1]), then in R'[x] every polynomial $p(x) \in \mathfrak{P}$ factors on e_p into unambiguous monic factors. We shall call such a \mathfrak{P} a thin basis for R.

We shall show that if \overline{R} is prime over R, then \overline{R} is sequentially prime over R and consequently that R has a prime integral closure if and only if R is thin.

REMARK. In definition (5) above the only important conditions are (b) and (d); i.e. if we have a set of polynomials which satisfies (b) and (d), then we can construct a set satisfying (a)-(d). Notice also that if R is thin, then R
otin T.

From now on, when R
otin T, we shall assume that R is inseparably closed (i.e. every purely inseparable polynomial in R[x] has a root). This involves no loss of generality since the inseparable closure R_i of R always exists and is prime and in fact sequentially prime over R. If R is inseparably closed instead of unambiguous polynomials, we can talk of irreducible polynomials (see [1]). Also all irreducible polynomials are then separable and, consequently, we have the primitive element theorem holding.

Let $R \models T$ and let $\mathcal{P} = \{ p(x) \in R[x] | p(x) \text{ is normal, monic and unambiguous} \}$. Let

$$R^* = \prod_{j \in J} R[\{x_p | p \in \mathcal{P}\}]_j$$

where the product is over all isomorphism types of $R[\{x_p | p \in \mathfrak{P}\}]$ such that $p(x_p) = 0$ for all $p \in \mathfrak{P}$. Let \tilde{R} be the subring of R^* generated by the sequences $x_p = \{x_{p,j}\}_{j \in J}$, over R. It follows from Lemma 1 of [2] or Lemma 2 of [1] that \tilde{R} is a commutative regular ring. It is not hard to see that $\tilde{R} \models K_{\overline{CR}}$ (\tilde{R} is algebraically closed at each point of $S_{\tilde{R}} = \operatorname{Spec}(\tilde{R})$ and since $S_{\tilde{R}}$ is compact, \tilde{R} is integrally closed). \tilde{R} is a free closure of R in the sense that if $R \subset R_1 \models K_{\overline{CR}}$, then there is a homomorphism of \tilde{R} into R_1 over R-in fact one of the projections will do.

Suppose that R has a prime integral closure \overline{R} . Let ν : $\overline{R} \to \widetilde{R}$ be a fixed embedding over R. For each $\beta \in \overline{R}$ there is a finite set $X_{\beta} \subset \{x_p | p \in \mathfrak{P}\}$ $\subset \widetilde{R}$ such that $\nu(\beta) \in R[x_p | x_p \in X_{\beta}]$. If $A \subset \overline{R}$, define $A' \subset \overline{R}$ as follows: $A_0 = A$, $A_{i+1} = \{$ all roots in \overline{R} of polynomials $p(x) \in R[x]$ such that $x_p \in \bigcup_{\beta \in A_i} X_{\beta} \}$ and $A' = \bigcup_{i \in \omega} A_i$. Notice that if $p(x) \in R[x]$, then all the roots of p(x) in \overline{R} are generated by a finite number of roots over R, since $S_{\overline{R}} = S_R$. It follows that if $\overline{A} \leq \aleph_0$, then R[A'] is countably generated over R and, in fact, if $A \subset B$ with B - A countable, then R[B'] is countably generated over R[A'].

Let $\overline{R} = R[\{x_{\alpha} | \alpha < \lambda\}]$ where each x_{α} is a root of a polynomial $p(x) \in \mathcal{P}$. Define $A_{\alpha} = \{x_{\gamma} | \gamma < \alpha\}$. $\overline{R}_{\alpha} = R[A'_{\alpha}] \subset \overline{R}$ and $\overline{R}_{\alpha} = R[\{x_{p} \in \overline{R} | a \text{ is a root of } p(x) \text{ for some } a \in \overline{R}_{\alpha}\}] \subset \overline{R}$.

It is clear that $\overline{R}_{\alpha} = \nu^{-1}(\overline{R}_{\alpha})$, that $\overline{R}_{\delta} = \bigcup_{\alpha < \delta} \overline{R}_{\alpha}$ for limit ordinals $\delta \leq \lambda$, that $\overline{R}_{\lambda} = \overline{R}$ and that $\overline{R}_{\alpha+1}$ is countably generated over \overline{R}_{α} .

LEMMA 1. (i) \overline{R}_{α} is prime over R.

(ii) $\overline{R}_{\alpha+1}$ is prime over \overline{R}_{α} .

(iii) $\overline{R}_{\alpha+1}$ is sequentially prime over \overline{R}_{α} .

PROOF. (i) is trivial.

(ii) Since \tilde{R}_{α} is free over R there is a projection μ : $\tilde{R}_{\alpha} \to \overline{R}_{\alpha}$ over R. It is easy to see that $\mu \circ \nu$ is an automorphism of \overline{R}_{α} . Let $\theta' = \operatorname{Ker}(\mu) \subset \tilde{R}_{\alpha}$ and let $\theta = \theta' \tilde{R}$. Then since \tilde{R} and \tilde{R}_{α} are models of K_{CR} , $\theta \cap \tilde{R}_{\alpha} = \theta'$. Also μ : $\tilde{R}_{\alpha}/\theta' \to \overline{R}_{\alpha}$ is an isomorphism. It is easy to see that \tilde{R}/θ is free over $\overline{R}_{\alpha} = \tilde{R}_{\alpha}/\theta'$ (in the same sense that \tilde{R} is free over R). Let $\overline{R}_{\alpha} \subset R_2 \models K_{\overline{CR}}$. Then there is a homomorphism $\mu_1 : \tilde{R}/\theta \to R_2$ over \overline{R}_{α} so that $\mu_1 \circ \nu : \overline{R} \to R_2$ is an embedding. Hence \overline{R} (and thus $\overline{R}_{\alpha+1}$) is prime over R_{α} . Hence, since $\overline{R}_{\alpha+1}$ is countably generated over R_{α} , by the remark following Theorem 2 of [1], $\overline{R}_{\alpha+1}$ is sequentially prime over \overline{R}_{α} , and (ii) and (iii) are proved.

COROLLARY. If \overline{R} is a prime integral closure of R ($\models K_{CR}$), then \overline{R} is sequentially prime over R.

PROOF. The results of [1] show that $\overline{R} \models T$. The inseparable closure R_i of R is always sequentially prime over R and $R_i \models T$ so the above construction and Lemma 1 show that \overline{R} is sequentially prime over R_i .

LEMMA 2. If \overline{R} is the prime integral closure of R, then R is thin.

PROOF. Let $\overline{R} = \bigcup_{\alpha < \lambda} R_{\alpha}$ where $\overline{R}_{\alpha+1} = \overline{R}_{\alpha}[a_{\alpha}]$ and $p_{\alpha}(a_{\alpha}) = 0$ with $p_{\alpha}(x) \in \overline{R}_{\alpha}[x]$ irreducible. Let $p_{\alpha}^{*}(x) \in R[x]$ be the unique irreducible polynomial in R[x] such that $p_{\alpha}(x)|p_{\alpha}^{*}(x)$. Without loss of generality we may assume that $p_{\alpha}(x)$ and $p_{\alpha}^{*}(x)$ are normal (see the proof of Lemma 1). A set $A \subset \overline{R} - R$ is called downwardly closed if: (i) if $a \in R[A]$ and at some point $z \in S_R$ the first time a(z) occurs in the sequence \overline{R}_{γ}/z is at stage α with a(z)being a combination over R of $a_{\gamma_1}, \ldots, a_{\gamma_n}$ say, then $a_{\gamma_i} \in R[A]$ for i = 1, ..., n; and (ii) A = A'. In the proof of Lemma 1 we saw that if A = A', then $R[A] \models T$, so if A is downwardly closed then $R[A] \models T$. For each downwardly closed $A \subset \overline{R}$ let Y_A^{α} be a factoring of P_{α}^* into irreducible factors in R[A]. Call two such factorings $Y_{A_1}^{\alpha}$ and $Y_{A_2}^{\alpha}$ essentially different if at some point $z \in S_R$ they are different. We now claim that for fixed α there are only finitely many essentially different Y_A^{α} 's (with A downwardly closed). This follows from the fact that p_{α}^* , factors only finitely often in the well-ordered sequence \overline{R}_{γ} since each $\overline{R}_{\gamma} \models T$, and that S_R is compact. We leave the details to the reader. For each α choose idempotents $e_{\alpha,i}$, $i=1,\ldots,n_{\alpha}$ such that for any downwardly closed A each $p_{\alpha}^{*}(x)e_{\alpha,i}$ factors into monic irreducible factors on $e_{\alpha,i}$ for each i. Let

$$\mathfrak{P} = \{ p_{\alpha}^{*}(x)e_{\alpha,i} | \alpha < \lambda, i = 1, \ldots, n_{\alpha} \}.$$

Certainly \mathcal{P} satisfies all the conditions of definition (5) except perhaps (d). Let $A \subset \mathcal{P}$ with $\overline{A} = \aleph_0$ and let B_1 be the downward closure of A (defined as follows: For each $a \in R[A] - R$ and each $z \in S_R$, adjoin to A the elements

 $a_{\gamma_1}, \ldots, a_{\gamma_n}$ defined above. Since S_R is compact, this will only involve considering a finite number of z's. Call the new set D. Let $A_1 = D'$. Obtain A_{i+1} from A_i in the same way that A_1 was obtained from A. The downward closure of A is $\bigcup_{i<\omega}A_i$). We must show that there is a countable subset $B \subset B_1$ such that adjoining roots for all polynomials in B (in the prime way) causes every polynomial in B_1 to split. Since \overline{R} is separable over R for each $\{a_1,\ldots,a_n\}\subset \overline{R}$ there are essentially only finitely many regular rings between R and $R[a_1, \ldots, a_n]$. By this we mean that there is a finite set of regular rings $R_i, j = 1, \ldots, k$, with $R_i \subset R[a_1, \ldots, a_n]$ and R_i finitely generated over R such that at each point $z \in S_R$, if R_z denotes the field (i.e. stalk) above z, then all the fields between R_z and $R[a_1, \ldots, a_n]_z$ occur among the R_{iz} . For each $\{a_1,\ldots,a_n\}\subset A$ we can look at the rings R_j defined as above and choose a finite set of generators A_i for R_i over R. Let \overline{A} be the union of all these A_i for all finite subsets $\{a_1, \ldots, a_n\}$ of A. Then \overline{A} is countable and in obtaining D from A as above instead of considering all elements of R[A] - R we need only consider all elements of \overline{A} . Call this set \overline{D} . Let $A_1 = \overline{D}'$ etc. and $B = \bigcup_{i < \omega} A_i$. downwardly closed. In countable and is = R [downward closure of A]. From the definition of \mathcal{P} it is clear that B has the required properties.

LEMMA 3. If $R \subset R_1 \subset R_2$ with $R_1 \models T$ and R_j (j = 1, 2) prime over R then R_2 is prime over R_1 .

PROOF. Let \tilde{R}_1 be constructed from R_1 as above. We then have

PROOF. Let $\mathscr P$ be $\underline a$ thin basis for R. Let $A \subset \mathscr P$. Then there is a B $(A \subset B \subset \mathscr P)$ with $\overline{A} + \aleph_0 = \overline{B} + \aleph_0$ so that every $p \in \mathscr P$ factors in R_B (obtained by adjoining roots of polynomials in B) into the product of irreducible monic factors on e_p .

We prove by induction on \overline{A} that if $A \subset \mathfrak{P}$, then there is a sequentially prime extension R_A of R which splits every polynomial in A and with $R_A \models T$, and such that in $R_A[x]$ every polynomial $p \in \mathfrak{P}$ factors into the product of monic irreducible factors on e_p . If A is countable this is trivial. Suppose the assertion is true for all cardinals $<\overline{A}$. Let B correspond to A as above. Write $A = \bigcup_{\alpha < \lambda} A_{\alpha}$ with $A_{\delta} = \bigcup_{\alpha < \lambda} A_{\alpha}$ for limit ordinals $\delta \leqslant \lambda$, $A_{\alpha+1} \supset A_{\alpha}$ and $\overline{A}_{\alpha} < \overline{A}$ for all $\alpha < \lambda$. Let $B = \bigcup_{\alpha < \lambda} B_{\alpha}$ with B_{α} corresponding to A_{α} as above. Then by induction $R_{B_{\alpha}}$ exists for each $\alpha < \lambda$. It is clear that $R_{B_{\alpha}} \models T$ (since in $R_{B_{\alpha}}$ every polynomial in \mathfrak{P} factors into a product of monic irreducible factors) for each $\alpha < \lambda$. Thus by Lemma 3, $R_{B_{\alpha+1}}$ is prime over $R_{B_{\alpha}}$ and hence $R_{B} = \bigcup_{\alpha < \lambda} R_{B_{\alpha}}$ is prime over R.

From Corollary 1 and Lemma 4 we immediately get the

THEOREM. If $R \models K_{CR}$ then R has a prime integral closure if and only if R is thin.

where φ is an embedding of R_2 into \tilde{R}_1 over R which exists because R_2 is prime over R. This diagram need not commute, but we do have $\nu(r) = \varphi(r)$ for $r \in R$. We shall show that there exists an automorphism ψ of \tilde{R}_1 over R such that the above diagram with φ replaced by $\psi^{-1} \circ \varphi$ does commute. The lemma then follows from the freeness properties of \tilde{R}_1 over R_1 .

 \tilde{R}_1 is generated by the x_p , $p \in \mathcal{P}$, over R_1 . For $a \in R_1$ let a_i , $i = 1, \ldots, n_a$, denote the conjugates of a over R, and for $p(x) \in \mathcal{P}$ let $p_i(x)$, $i = 1, \ldots, n_p$, denote the conjugates of p(x) over R. Notice that if $p(x) \in \mathcal{P}$, then $p_i(x) \in \mathcal{P}$, and since $R_1 \models T$, $(p_i(x), p_i(x)) = 1$ for $i \neq j$.

For $a \in R_1$ we have $\varphi(a) = \sum a_i e_i$ where the e_i are disjoint idempotents of \tilde{R}_1 and $\sum e_i = 1$. Similarly we have $\varphi(p(x)) = \sum_{i=1}^{n_p} p_i(x)e_i$.

Define $\psi \colon \tilde{R}_1 \to \tilde{R}_1$ as follows:

$$\psi(a) = \varphi \circ \nu^{-1}(a) \quad \text{for } a \in \nu(R_1),$$

$$\psi(x_p) = \sum_{i=1}^{n_p} x_{p_i} e_i.$$

It is obvious that ψ is a homomorphism because of the freeness properties of \tilde{R}_1 over R_1 . ψ is locally one-to-one (i.e. on each stalk) and hence one-to-one. Also $x_p \in \text{Range }(\psi)$ so ψ is onto. Therefore ψ is an automorphism with the required properties.

LEMMA 4. If R is thin, then R has a prime integral closure.

REMARK. The condition that R be thin is not a first order condition since every countable model of T is thin. Hence for R uncountable the necessary and sufficient condition for R to have a prime integral closure is not first order, while for countable R it is.

REFERENCES

- 1. L. Lipshitz, Commutative regular rings with integral closure, Trans. Amer. Math. Soc. 211 (1975), 161-170.
 - 2. ——, The real closure of a commutative regular f-ring Fund. Math. (to appear).

DEPARTMENT OF MATHEMATICS, PURDUE UNIVERSITY, WEST LAFAYETTE, INDIANA 47907