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NONATOMIC BANACH LATTICES
CAN HAVE /, AS A DUAL SPACE

E. LACEY and p. wojtaszczyk

Abstract.    Examples of nonatomic M spaces whose duals are /,  are

constructed.

In the theory of (separable) Banach lattices it is sometimes true that a space

X is purely atomic if and only if X* is (for example, if X is order complete and

X* is separable). However, in general, it is not true. The main purpose of this

paper is to illustrate this with the following theorem on M spaces.

Theorem 1. Let a be a countable ordinal (a > w). Then there is a nonatomic

M space X whose dual is linearly order isometric to lx and such that X is linearly

isomorphic to C(X,a~).

Unexplained terminology shall be that of [5]. By an atom in a Banach lattice

we shall mean an element x > 0 such that if 0 < y < x, then y = ax for

some a > 0. A purely atomic Banach lattice is one in which every positive

element dominates some atom and a nonatomic Banach lattice is one which

admits no atoms. By <(1, a) we mean the order interval of ordinals between 1

and a with the usual order topology.

The following theorem is known. We state and prove it only as background

to the discussion.

Theorem 2. Let X be a separable order complete Banach lattice.

(a) If X is purely atomic and X* is separable, then X* is purely atomic;

(b) If X* is purely atomic, then so is X.

Proof, (a) Since X is separable and order complete, the norm is order

continuous (see [7]). Thus the atoms form an unconditional basis for X and

the sequence of corresponding biorthogonal functionals (which are atoms) in

A'* forms an unconditional basis for X* (see [3]).

(b) Suppose that X* is purely atomic and let x* G X* he a nonzero lattice

homomorphism (i.e. an atom). Then the kernel I of x* is a proper closed ideal

in X and since X has order continuous norm, 7 is a band and X = I © I1-.

Clearly 7X = span(x) for some x > 0 and x is an atom in X. Now suppose

y > 0 and z*iy) = 0 for all atoms z* in X*. Then for F = {y)±]-, z* \F = 0

for all atoms z*. Let y* > 0 be such that y*\F ¥= 0 and y*\F± = 0. Then

y* A z* = 0 for all atoms z*, which is impossible. Thus X is purely atomic.

A simple example shows that order completeness is necessary for the result
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in (a) above. For each « and k with 0 < k < 2" let Ink = ik/2n,ik + l)/2")

and put X„ to be the span of the characteristic functions of [Ink : 0 < k < 2").

We define X by

X = {{/„}: /„ G X„   and lim /„ = / G Lp[0,1])
l^ n—»oo r J

where the limit is taken in the IP-norm. Clearly A is a linear space and, in fact,

a Banach lattice under the supremum norm given by \\{fn)\\ = sup„ \\fn \\p, and

the positive cone C = {{/,}: f„ > 0 for all «}. A simple calculation shows that

X* is linearly order isomorphic to [(® 2"=i ^C2"))/, ® L9[°. !]]/, which is

clearly not purely atomic since Lq[0,1] is atomless (1/p + I/o = 1). But, each

of the characteristic functions x¡ k generates an atom in X by defining/,, = 0

if m ¥= n and fn = Xi   an<i ll is trivial to see that X is purely atomic.

The proof of (b) does not really depend on separability. If X is purely

atomic and order complete, then X cannot contain a sublattice isomorphic to

lx. Since, otherwise, X* contains one isomorphic to I* and, hence, X*

contains a sublattice isomorphic to Lx[0,1], which is impossible if X* is purely

atomic since Lx[0,1]* = Lx[0,1] is also atomless. (Also, statement (b) was

mentioned without proof in [6] where the author inadvertently left off the

hypothesis of order completeness.)

Our initial M space will be formally constructed from a set of relations on

C<l,w">. However, it is easier to visualize a description of it by first building

a certain union of intervals in the plane and taking a subspace of the space of

continuous functions on this space (we wish to thank M. Starbird for

suggesting the form of this set to us). For simplicity we give a heuristic

description of the space. A formal construction is possible, but nothing seems

to be gained by insisting on such a completely formal description. Each

interval we consider shall be a closed interval of a certain length less than or

equal to one. We shall assume that all of these intervals lie in the first quadrant

of the plane and that they start at the origin (so, they are determined by their

length and the angle they make with the positive x-axis). Let [dn] be a strictly

decreasing sequence in (0,1] with rf0 = 1. We put I0 to be the unit interval

along the positive _y-axis. Next take a sequence of intervals of length dx whose

slopes are strictly increasing to +00 (i.e. the sequence converges to /0). For

example, we may label this sequence as {/(),„} where the slope of /o,«+i is greater

than the slope of 70 . The idea is that to each interval /0 we now correspond

yet another sequence of intervals, each of length d2, whose slopes are strictly

increasing to the slope of IQ and such that if « > 1, then all of these intervals

lie strictly between I0n_ x and I0n. We continue in this manner using as the

next length the number d3 and so on. This construction is such that for each

arc S„ in the first quadrant of the circle of radius dn centered at the origin, Sn

intersects this class of intervals in a set homeomorphic to <l,w") where, in

fact, we can take the natural order on this intersection as we progress in the

counter-clockwise direction from 0 to tt/2. We let T be the compact space

which is the union of all of these intervals. It is easy to see that the closure of

the end-points of these intervals in T is naturally homeomorphic to <l,uu).

We associate an M space with T in the following natural way: X = {/

G C(T):/(0,0) = 0 and / is affine when restricted to any interval in 7}.
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Clearly X is indeed an M space. Moreover, since each / G X is affine when

restricted to an interval, it is completely determined on this interval by its

value at the end-points. Thus X can be embedded in a linear order isometric

fashion into C(X,u") simply by taking the restriction operator/ —>/|7¿ where

T0 is the closure of the end-points of the intervals in T. One can easily see that

X is then just the space of functions in C<l,w") satisfying a certain set of

relations, e.g.,/ G X satisfies/(0,dx) = dxfiO, X) among other relations. Now

C<1, wu>* == /i and, hence, it follows readily that X* at /, (see [5]), that is, X*

is linearly order isometric to /,. Moreover, from the definition of X it follows

by easy calculation that X is nonatomic. So we have now constructed a

nonatomic M space whose dual is equivalent to / , a purely atomic Banach

lattice. We focus the remainder of the paper on the question of identifying X.

A theorem of Benyamini says that a separable M space is linearly

isomorphic to a space of continuous functions (see [1]). Also, Bessaga and Pel-

czyñski have classified the isomorphic classes of spaces of the type C<l,a>

where a is a countable ordinal as follows: if <o < a < ß < Í2, then C<l,a) is

linearly isomorphic to C<l,/i) if and only if ß < aa (see [2]). Thus, combining

these two theorems we see that the space X above is linearly isomorphic to

either c0 or C<1, u"), We shall show that both choices are possible depending

on the nature of the sequence [dn) chosen to construct X. There is a natural

linear isometric embedding of C(l,w") into C(5n) which is given as follows:

for /G C<l,tt">, QJ\S„ n T = f (we consider that <l,u"> = Sn n T
where Sn is the arc of radius dn). Xf s G S„\T and 5 lies between $, and sk in

Sn D T and s¡, sk are the closest members of Sn n T to s, let r0 be the unique

element on the chord between Sj and sk determined by drawing the line from

origin to s and putting r0 to be the point of intersection of this line with the

chord. Thus r0 «• os¡r\- (1 - d)sk where 0 < a < 1 and we define ($„/)(.$)

= afisj) + (1 - a)fisk). It follows readily that $„(/) G CÍS„) and that $„ is
a linear isometry of extension. We let Qn : X -* X be the operator defined by

(&■/)(') = i\t\/d„)%if\sn n T)idnt/\t\).

Since 4>„ is an extension operator, Q„ ° Q„ = Q„, i.e., Qn is a projection on X.

Lemma l.llß,,|| = 1.

Proof. Let / G X with ||/|| = 1 and suppose t G T is in an interval of

length > d„. Then d„t/\t\ G Sn n Tand

l«2„/)WI = \i\t\/dn)fidnt/\t\)\ = |/(0| < 1.

If t is in an interval of T of length < dn, then since \M.f\Sn n T)(dntl\t\)\

<X and \t\/dn<X,\ÍQJXt)\<X.

Lemma 2. For any f G X, lim^ ||ß„/ - /|| = 0.

Proof. We observed in the proof of Lemma 1 that if t G T and / is in an

interval of length > dn, then (ßn/)(0 = fit) and if t is in an interval of length

< dn, \ÍQJ)ít)\ < ||/|S„ n 71J. Let / G X and e > 0 be given. Let N he

such that if |f | < dN, then |/(f)| < e. For n> N,
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l(ö„/)W-/WI
ro if ms i

= 1 < 211/1$,
in an interval of length > dn,

n T\\ < 2e    otherwise.

Lemma 3. ß„»ßm = ßm°ß„ = Cmtofc-O:

The proof of this is immediate.

If we put <2o = 0, then Lemma 2 above shows that X = 2^Li (Qn — 6«-i)

iX). Let Xn = «2„ - Qn-\)iX) = {/ G A: ß„/ = / and ßn_,/ = 0}. A
routine calculation shows that Xn is linearly isometric to (c0 © • • ■ © c0)/oo

= c0, where there are « summands in the direct sum. Hence if we can put a

condition on the sequence {d„} which implies that 2^i fn converges in norm

whenever f„ G Xn with \\fn\\ —> 0, then we shall have that X is linearly

isomorphic to (© 21^°= i Xn)c0 which is, in turn, linearly isomorphic to c0 by

the above remarks.

We now show that dn = X" where À is a fixed number with 0 < X < 1

defines such a sequence. Suppose that fn G Xn and limn^.0O ||/,|| = 0. For

e > 0 let N be chosen such that if « > N, then max{||/,||,i/„} < e. Then for

« > N, fn is identically zero on intervals of length greater than dn. If m > N,

then

m+k

2/ =   sup
\t\<dm

m+k

s m

Moreover, if t is in an interval of length ds for some s < m, then the right-

hand side of the equality is 0.

If ? is in an interval of length ds for some í > m, then

m+k

2 m < î \fii')\< í u\â= í iläiiS
i=m i=m ui        i=m A

< e 2 A5"' < e 2 X =
/=! i=0 1 -A'

We note that the above result can be deduced from an unpublished

refinement of Benyamini's theorem due to A. Gleit [4]. Namely, by Gleit's

result, if supndn+x/dn < 1, then the space X above is linearly isomorphic to c0.

To show that for certain sequences [dn] the space X constructed above can

be linearly isomorphic to C<1, w"> we need only show that there are sequences

[d„) for which the corresponding X is not linearly isomorphic to c0.

Recall that the Banach-Mazur distance between two Banach spaces X and

Y is the infimum, diX, Y), of ||T|| ||T_11| where T ranges over all invertible

operators from X onto Y (d(X, Y) = co if the spaces are not linearly isomor-

phic).

From the Bessaga-Pelczyhski theorem cited above Qn = rf(co,C(l,u")) is

a finite number. Moreover {a„} is increasing. Clearly lim^^an = oo since

(® 2>?=i C<l,w"))Co is linearly isomorphic to C<l,wu) and if limn^xan

< oo, then (® 2^°=i C<l,w"))c would also be linearly isomorphic to c0.

From the definition of Qn, Qn(X) is easily seen to be linearly isomorphic to

C<l,wn>and, in fact, d(Q„(X),C(l,o>")) < \/dn.
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Finally we recall the well-known result of Pelczynski that a complemented

infinite dimensional subspace of c0 is linearly isomorphic to c0 (see [5]).

Furthermore, for each A > 1, the supremum, Kx, of íz(c0,P(C0)) where P

ranges over all projections on c0 with infinite-dimensional range and such that

||P|| < X is finite. For, suppose there is a sequence of such projections Pn such

that dic0,P„ic0)) > n. Since ||J»|| < A for all n, (© 2"-i ^(c0))c„ is comple-

mented in (© 2,^1 Cn)c0 = c0' Dut cannot be isomorphic to c0 since

lim^ndic0,P„ic0)) - oo.

We now show that if the sequence [dn] is chosen such that {andn} is

unbounded, then the associated space X is not linearly isomorphic to c0. For,

suppose Tis an invertible operator of X onto c0 and put X = \\T\\ \\T~X ||. Then

for each n, TQn T~x — Pn is a projection on c0 with infinite-dimensional range

and ||J»|| < A. Thus

an = c7(c0,C<l,co">)

< dic0,P„ic0)) ■ díP„ic0),QnÍX)) ■ díQnÍX),C(X,U"})

< Kx ■ X/d„,

where Kx is the constant given above for À. This contradicts the choice of the

sequence {dn} since {a„d„} is bounded by XK\, which is a fixed constant.

Recall that if S is a compact Hausdorff space and Y is a Banach space, then

the space C(S, Y) of all F-valued continuous functions on S is a Banach space

in the supremum norm. Moreover, if Z„ = C(S) for each n, then

(® 2^=1 Zn)c is linearly isomorphic to CiS,c0). In particular, if a is a

countable ordinal, then C<l,a) is linearly isomorphic to C«l,a>,c0) since

C(l,a> is linearly isomorphic to (© 2«°=i ^n)c0 where Zn = C<l,a) (see [5]).

Proof of Theorem 1. By the above we can construct a nonatomic M space

X which is linearly isomorphic to c0. It is easy to see that Ci(X,a},X) is an M

space under pointwise ordering. Now C(<(1,«), X) is clearly linearly isomor-

phic to C«l,a>,c0) which, in turn, is linearly isomorphic to C<l,a> by the

above remarks.

Finally we note that it is possible for a nonatomic Banach lattice Y to have

the property that Y* has exactly n atoms (« = 1,2, • • • )■ Clearly we need only

demonstrate that there is such a Y so that Y* has exactly one atom. We can

do this in a manner similar to the example given after Theorem 2 above. Both

of these examples are motivated by work in [8]. Let 1 < p < co and

/ G L, [0, X] he a fixed positive element of norm one. Then Y = {{/,}:/,

G Lp[0,1] and (/,) converges to af for some scalar a). Then Y is a nonatomic

Banach lattice under the supremum norm and coordinatewise ordering and its

dual has exactly one atom.

References

1. Y. Benyamini, Separable G spaces are isomorphic to C(K) spaces, Israel J. Math. 14 (1973),

289-293.

2. C. Bessaga and A. Pelczynski, Spaces of continuous functions. IV. On isomorphical

classification of spaces of continuous functions, Studia Math. 19 (1960), 53-62. MR 22 #3971.



84 E. LACEY AND P. WOJTASZCZYK

3. M. M. Day, Normed linear spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, N.

F., Heft 21, Reihe: Reelle Funktionen, Springer-Verlag, Berlin, 1958. MR 20 #1187.

4. A. Gleit, Some separable Lt-preduals are isomorphic to C(X) spaces, 1974 (unpublished).

5. H. Elton Lacey, The isometric theory of classical Banach spaces, Die Grundlehren der math.

Wissenschaften, Band 208, Springer-Verlag, Berlin and New York, 1974.

6. Heinrich P. Lotz, Minimal and reflexive Banach lattices, Math. Ann. 209(1974), 117-126.

7. G. Ja. Lozanovskiï and A. A. Mekler, Completely linear functional and reflexivity in normed

linear lattices, Izv. Vyss. Ucebn. Zaved. Matematika 1967, no. 11 (66), 47-53. (Russian) MR 36

#3111.

8. A. Pelczynski and P. Wojtaszczyk, Banach spaces with finite dimensional expansions of

identity and universal bases of finite dimensional spaces, Studia Math. 40 (1971), 91-108. MR 47

#2319.

Department of Mathematics, University of Texas, Austin, Texas 78712

Institute of Mathematics, Polish Academy of Sciences, Warsaw, Poland


