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A CLASS OF SPECTRAL SETS

C. ROBERT WARNER

Abstract.   The two main results are:

(i) If the union and intersection of two closed sets are Ditkin sets, then

each of the sets is a Ditkin set.

(ii) If the union of two sets is a spectral set and their intersection is a

Ditkin set, then each of the sets is a spectral set.

A corollary of (i) is a generalization of a theorem due to Calderón which

proved that closed polyhedral sets in R" are Ditkin (= Calderón) sets. A

corollary of (ii) establishes an analogous result for spectral sets.

The proofs hold for commutative semisimple regular Banach algebras

which satisfy Ditkin's condition-that the empty set and singletons are Ditkin

sets in the maximal ideal space.

Let G be the character group of the locally compact abelian group T, and

let AiG) denote the algebra of all Fourier transforms of functions <p in L'(r)

with the pointwise product. Thus/belongs to AiG) if and only if/(s) = <p(s)

— St <p(y)(■*>y)d'Y f°r some <P m ^(r). If A(G) is equipped with the LX(T)

norm, i.e. ||/|| = /r I<p(y)I^Y> tnen A(G) becomes a commutative Banach

algebra isometrically isomorphic to L'(r).

If / is an ideal in AiG), then Z(/), the zero set of /, is the intersection of the

zero sets of all the elements/belonging to/, i.e. Z(/) = D{Z(/):/G 7}.Let

£ be a closed subset of G. The largest ideal (hence closed) in A(G) with zero

set E is denoted by k(E), and the smallest ideal with zero set E is denoted by

j(E). We note that

k(E) = {f G A(G): f = 0 on E]

and

j(E) = {/ G >4(G):/has compact support disjoint from E).

If E is a closed subset of G, then E is a spectral set (a set for which spectral

synthesis holds) if the A(G)-closure of j(E) = j(E) is the only closed ideal

with zero set E [7, p. 158]. The closed set E is said to be a Ditkin set or a

Calderón set [7, p. 169] if, for each / in k(E), f belongs to the closed ideal

f-j(E). (See also [4, p. 183], [2, p. 227], [5, p. 30], and [3, pp. 513-515].)
The family of spectral sets referred to in the title of this paper is the class of

Ditkin sets. It is clear from the definition that every Ditkin set is a spectral set,

but it is not known whether or not the two classes coincide. Ditkin sets occur

frequently in the study of spectral sets, however. For example, the abstract
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Wiener Tauberian theorem follows from the fact that the empty set is a Ditkin

set (hence is an S-set) and the Silov-Wiener Tauberian theorem can be proved

by showing (as in [9]) that closed scattered sets are Ditkin sets. In fact (by [9]),

if a set is found to be a spectral set by means of the (generalization of the)

Silov-Wiener Tauberian theorem, then it is a Ditkin set.

1. Theorem. Let E and F be closed subsets of G for which E C\ F is a Ditkin

set. Then EU F is a Ditkin set if and only if both E and F are Ditkin sets.

Proof. Suppose that EU F is a Ditkin set and that/ G kiE).

Since £ n F is a Ditkin set, there is a sequence {un} in jiE n F) such that

limn||i/„/ —/|| = 0. For a fixed n, let C = F n (support of unf). Thus C is

compact and disjoint from E. Hence there is a w G jjE) such that w = 1 on

the compact set C. Let g = unf - un wf so g belongs to g • jiE U F). Thus g

belongs to f •/{£); so g + unfw G f-jiE). Consequently, f G f ■ jiE).
Therefore F is a Ditkin set. Similarly, F is a Ditkin set.

The other half of the theorem asserts that finite unions of Ditkin sets are

Ditkin sets [7, p. 170].

2. Corollary. Let A and B be closed subsets of G. If B is a Ditkin set

containing A, and the relative boundary of A as a subset of B is a Ditkin set in G,

then A is a Ditkin set.

Proof. Let E = A and F = B\A in Theorem 1.

This result has its origin in Calderón's Theorem [1, Theorem 5]. Calderón

proved it for the case where S is a closed subgroup of G. The corollary is a

generalization of his theorem since closed subgroups are Ditkin sets [1,

Theorem 2]. (Also, see [7, p. 170] and [5, pp. 152-153].) The method of
Theorem 1 can be employed to prove the following result.

Theorem V. If E U F is a Ditkin set, and F n bdry E is a Ditkin set, then
E is a Ditkin set.

3. Lemma. Let Ex and E2 be closed subsets of G whose intersection is a Ditkin

set, and let E = Ex U E2. Let I be a closed ideal in AÍG) whose zero set is E.

Then I can be uniquely expressed in the form I = Ix D /2, where I¡ = I + J¡, and

J¡ = jiE/} (/' = 1,2). This form is unique in the sense that if' Z.(l\ ) = Ex, Z(/2)

= E2, and I = I\ D I2, then I\ = Ix and I2 = I2.

Proof. To prove the equality, we have only to show that Ix n I2 G I.

Hence, let / belong to /, n I2 and let 8 > 0 be arbitrarily chosen. Since

Fi n E2 = F is a Ditkin set there is a v iny'(F) such that \\vf — f\\ < 8.
The function vf belongs to / locally at the point at infinity of G, and locally

at each point of G not in E n (supp vf). Let Cx = Ex n (supp vf), C2

= E2 D (supp vf), and observe that Cx n E2 = 0. Hence there is a w in

jiE2) such that w = X in a neighborhood of Cx. Since vf G Ix, given e > 0,

there is a g in /. and a u iny'(Fi) for which \\vfw — uw — gw\\ < e. The ideal /

is closed, and uw G I so this means that vfw G I. Hence vf belongs to / locally

at each point of Cx, and similarly, it belongs to / locally at each point of C2.

Consequently vf G I. The choice of 8 > 0 is arbitrary, so it follows that/ G /.

To prove the uniqueness, suppose that Z(/'i) = Ex, Zil'2) = E2, and that

/, n I2 = I\ n /2. Let/ G I\, and e > 0 be given. Since/ G A:(F) there is
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a u in j(F) such that ||w/-/|| < e. Let K = Ex D (supp uf), and let w be

chosen in j(E2) such that w = 1 on a neighborhood of A". Thus uf — ufw G Ix.

But ufw G j(E2) G 1'2, so h/h> G /| n 72, i.e. ufw G Ix. Since uf — ufw be-

longs to Ix also, it follows that uf G lx, hence that f G Ix. Thus /', Ç /,.

Similarly, /, G /',, so that I\ = Ix. By an identical argument it follows that

I'2 = I2.

4. Theorem. Let Ex and E2 be closed subsets of G whose intersection is a Ditkin

set, and let E = Ex U E2. Then E is a spectral set if and only if both Ex and E2

are spectral sets.
_

Proof. If Ex and E2 are 5-sets and / = j(E), then by Lemma 3,

jJT) = i = T+-jx n r+~T2 = i + kiEx) n / + kiE2)

= kiEx) n kiE2) = k(E),

that is, E is an 5-set. Conversely, if E is an 5-set and / = j(E ), then

j(E) = I = T+~TX n T+~T2 = Jx n J2 and k(E) = k(Ex) n k(E2) = W)
by assumption. Hence, by Lemma 3, Jx = kiEx), and J2 = kiE2).

5. Corollary. Let F be a spectral set and let E be a closed subset of F. If the

relative boundary of E as a subset of F is a Ditkin set, then E is a spectral set.

6. Remark. The first half of Theorem 4-that the union of two S-sets which

intersect in a Ditkin set is an 5-set-was obtained for AiG) by Herz [2, p. 228],

and also, essentially, by Calderón [1, p. 3]. For the more general Banach

algebra case, Reiter [6, p. 557] proved Lemma 3 and Theorem 4 in the case

where the two sets were disjoint.

Our result, as well as that of [9], was suggested by a study of Reiter's paper

[6]. Saeki [8, p. 551] gives an elegant proof in a Banach-algebraic setting of a

result which is more general than the first half of Theorem 4. It is not difficult

to see that our proofs of Lemma 3 and Theorem 4 can be modified slightly to

prove the more general results, Lemma 3' and Theorem 4'.

Lemma 3'. Let Ex and E2 be closed subsets of G, let E = Ex U E2, and

suppose that there is a Ditkin set C G E such that the intersection of the

boundaries of Ex, E2 and of E is contained in C. Let I be a closed ideal in AiG)

with Z(I) = E. Then I can be uniquely expressed in the form I = Ix D I2, where

I¡ = I + J¡, and J¡ = JÍE¡) (i = 1,2). This form is unique in the sense that if

Z(I\) = Ex, Z(I'2) = E2, and I = I\ n 1'2, then I\ = Ix and I2 = I2.

Theorem 4'. Let Ex and E2 be closed subsets of G, let E = Ex U E2, and

suppose there is a Ditkin set C G E such that the intersection of the boundaries

of Ex, E2 and of E is contained in C. Then E is a spectral set if and only if both

Ex and E2 are spectral sets.
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