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THE ORBIT SPACE OF A SPHERE BY AN
ACTION OF Zp,

STEPHEN J. WILLSON

Abstract. Let A- be a finite CW complex with the Z , homology of an n-

sphere. Suppose Z , acts cellularly on X. The homology of the orbit space

X/Z , with coefficients Z , is computed.

Introduction. Let X be a finite CW complex. Denote by Zm the cyclic group

of order m. If n\m, then Zn is naturally identified with a subgroup of Zm. The

group Zj is the identity group. A cellular action of Zm on X is a cellular map

a: X -> X such that am equals the identity map. If H is a subset of Zm, H may

be identified with a collection of maps a', and the set of points in X left fixed

by each element of H is denoted XH. If we identify a point x G X with a(x),

we obtain the orbit space X/Zm. If Zn c Zm, then X2" inherits a Zm;n action,

and XZ"/Zm/n is naturally contained in X/Zm. The (- l)-sphere is, by definition,

the empty set.

In this paper we shall assume p is a prime, X has the Zp, homology of an n-

sphere, and Zp! acts cellularly on X. We shall then compute the homology of

the orbit space X/Zp!. In particular, we prove the following theorem.

Theorem A . Let p be an odd prime integer, and let r > s. Suppose X is a finite

CW complex with the Zr homology of an n-sphere, and Zn* acts cellularly on X.

Assume, for I = 0, 1, ..., s, that X ^ has the Zp, homology of a kfsphere (so

k0 < kx < • • • < ks = n). Then Ht(X/ZpS; Zpr) equals Zpr for i = 0; 0 for

1 < i < k0 + 2; Zpfor k0 + 2 < i < kx + 2; ...; ZpJfor kj_x + 2 < i < k}
-I- 2; ... ; Zp!for ks_^ 4- 2 < i < ks = n; Zprfor i = n;0 for i > n.

The restriction that/; be odd is for convenience. In fact, one needs only that

for each i either /c, = ki+x or kt < kj+x - 2; this property is well known if p

is odd. If p = 2 and for some/ kj = kj+l — 1, the formulas in Theorem A

need modification; in this case the change of groups is delayed by one, so that

Hk.+2(X/ZpS; Zpr) is set equal to the group (already computed) Hk(X/Zp!; Zp,).

Thus, if s = 5, k0 = 1, kx = 3, k2 = 4, k3 = 5, k4 = 7, k5 = 9, we obtain
that Hi(X/Zps;Zpr) equals 0 for 1 < / < 2; Zp for 3 < / < 6; Z 4 for 7 < i

< 8; Zpr for j = 9.

The assumption that Xz? has the Z , homology of a sphere is no restriction

at all; this is an easy application of the Smith theorem and the Universal

Coefficient Theorem. (It is not hard to see that if Y has the Z r homology of
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an w-sphere, then Hn(Y;Z) contains a free summand Z; and Hj(Y;Z)

contains no ^-torsion for any j.)

We note that if one desires Ht(X/Z ,\Z J) where 1 < / < s, by an easy

application of the Universal Coefficient Theorem, one need only tensor the

group obtained in Theorem A with Z j; one uses the fact that Z j ® Z k

= Zpm where m is the minimum of/ and k.

Moreover, if q is a prime other than p and R = Zq, for some r or R is the

field of rational numbers, then Ht(X/ZpS;R) = Hi(X;R)Zp', the subgroup of

Hj(X; R) left fixed by the homology map induced by a. (See, for example, [1,

p. 37].) Hence our result completely determines the integral homology groups

oix/zp,.
The proof of Theorem A is based on our paper [4]. We shall briefly

summarize here the salient features of that paper: Suppose R is a commutative

ring. One may construct from R and the group Z s a ring 5, called the isotopy

ring. Suppose ht(X,A) is an equivariant homology theory defined for pairs of

finite CW complexes with cellular ZpS actions; assume h((Z S/K) = 0 for all

i > 0 and all subgroups K of ZpS; and that h0(ZpS/K) is an R module for each

A'. Then one may construct a left i module M with the following property: For

any pair (X, A) of finite CW complexes with cellular ZpS action, there is a first

quadrant spectral sequence with Emn = ToT^(GH„(X,A;i),M) which con-

verges to h±(X,A). Here GHn(X,A; i) is a particular right 9 module with the

property that, as an R module, GHn(X,A; 5) = ®Hn(XK,AK\ R), where the

summation runs over all subgroups K of Zp,.

An example. In the proof of Theorem A, it will be convenient to have an

example of a Z , action on a Z r-n-sphere. Ultimately, the example will save

us some messy algebra in the computation of the E2 terms of various spectral

sequences.

Let p. denote the complex numbers with the (linear) action g ■ v

= e\p((2m)/p^~-'')v, where g generates ZpS. Then

m0p0 © mx p, © • • • © msps    (for  w, > 0)

is a vector space of dimension 2(m0 + mx + ■ ■ ■ + ms) over the reals. Let X

denote its unit sphere, so that X is an n = 2(m0 + • • • + ms) — 1-sphere. Let

k[ = 2(ms_[ + ms_l+x + • • • + ms) - 1 for 0 < / < s. Then X has a Zp,

action, and X '''"" is a A:rsphere.
Steenrod and Epstein [3, p. 67] show how to obtain a convenient cell

decomposition of X so that g becomes a cellular map. If, for example, the unit

sphere S of ps_2 © ms_x ps_x © msps has been given a cell decomposition

already and ms_2 > 1, then we obtain a cell decomposition of the unit sphere

T of 2ps_2 © ms_xps_x © msps as follows: The sphere of ps_2 has a cell

decomposition with p2 0-cells e°, ge°, ..., gp ~x e° and p2 1-cells ex, gex, ...,

gp2~xex. For the /-cells of T, i < k = 2(ms_x + ms + 1) - 1, the dimension of

S, we use the cells of S. Thasp2 (k + l)-cells, namely S * g'e°(the join); and

p2 (k + 2)-cells, namely S * g'ex.

In this manner we obtain a cell decomposition for X with 1 /-cell e' if

0 < i < k0; with p /-cells e', ge', ..., gp~x e' if k0 + 1 < / < kx; ...; with

pm /-cells e', ge', ..., gpl"~xe'  if km_x + 1 < i < km. It is easy to see that



THE ORBIT SPACE OF A SPHERE BY AN ACTION OF Z^ 363

g(gJe') = gi+xel where/ + 1 is reduced modulo the relevant power of p.

Moreover ifi is even and km_x + 1 < i < km, then

3(gV)=      2      g'e'-1.
l=0,pm-\

If / = km_x + 1,

a(fV') =       2       g'e1-'.
i=o,...,/>"■-' -1

If /' is odd and km_x + 1 < / < km, then

3(gV') = ^+1eH-gV-1.

Note that by suspending the above X, we may ensure that k0 be even if

desired. We obtain readily the following facts about this X.

Lemma 1. Let r > s. Suppose 0 < ks_2 < ks_ x < ks. Then

Ht(X/ ZpS, X z'/ ZpS.\; Zpr) equals Of or i < ks_x; Zprfori = ks_x + 1; Z^/or

&,_, +2 < /<*,.
HiiX/Z^X^/Zp^Zp,) equals 0 for i < fc,_2; Zpr for i = A:,_2 + 1; Z^.,

/<"■ ̂-2 + 2 < z <%_,.

Proof. A simple exercise.   Q.E.D.

Proofs.

Lemma 2. Let r > s. Suppose X is a finite CW complex with the Z_, homology

of an n-sphere. Let Z , act cellularly on X, so that Xzf has the Z r homology of a

k-sphere, 0 < k < n. Then H^X/Z^^'/Z^Zpr) equals 0 for 0 < / < A:;

Zprfor i = k 4- 1; ZpSfor k + 2 < /' < n; Zp,for i = «; Ofor i > /?.

Proof. Let T be the left $ module corresponding to the homology theory

ht(X,A) = Ht(X/Zp!,Xzp/Zp^ U A/ZpslZpr).

There is a spectral sequence with Eqh = Tora (GHb(X; 9), T) converging to

/i/CA"). Let A:, be the dimension of X p1"". We assume first that k0 > 0. Note

that E2j, = 0 for 0 < 6 < k0. Hence, for b < k0, £/;0 = /ifc(Ar) for any A"

with the assumed properties. Using Lemma 1, and noting that Eb0 is

independent of k0 (as long as 0 < k0), we see Eb0 = 0 for all b.

Now, since E2b = 0 for k0 < b < A:,, it follows £^o = /!„+*„ (*) for any

such X. Using our example, E2ko = 0 for all a. Continuing in this manner, we

see E2j, = 0 for a < ks_x = k. But E2b = 0 for k < ft < ks = n. Hence

^a,& = na+k(X) for any such X. By Lemma 1, using the independence of

Hk(X; 5) from n, we see £02^ = 0; E{\ = Zp,\ E}%k = Zp! for i > 2. Thus we
obtain the lemma for i < n. It is well known that h{(X) = 0 for / > n. (See,

for example, [1, p. 43].) Finally, £20 = GH„(X; 9) ® T = Zpr, and rf:

E2-k+\,k ~* E2fi becomes <tf: ZpS ~* Zp,. If J were not one-to-one, then

hn+x(X) would not equal zero. Hence E™0 = Zp,-S, E™_kk = ZpS, and the

qrder of hn(X) is pr. The case r = 1 would show that hn(X) = Zp. From this
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fact, a consideration of cases and the Universal Coefficient Theorem, using the

fact that hn+x(X) = 0, shows hn(X) = Zpr.

Minor modifications in the above argument yield the result if k0 = kx

= • • • = kj = — 1 for some/ < 5 - 1.   Q.E.D.

Lemma 3. Let r > s. Let X be as in the statement of Theorem A. Suppose

0 < ks_2 < ks_x < n. Let k = ks_2. Then Hj(X/ZpS,XZ>>>/ZpS-2; Zpr) equals 0

for 0 < i < k; Zp, for i = k + 1; Z ,-\ for k + 2 < / < ks_x.

Proof. The proof is completely analogous to that of Lemma 2, using

hj(X,A) = Hi(X/ZpS,Xzp'/ZpS.1;Zpr), a corresponding left 9 module T, and

the fact that

£<>,*,_■ = c'4J_,(*;5)®3r = o.

Q.E.D.

Proof of Theorem A. We prove Theorem A by induction on s.U s = 1, we

let 0 be the left § module corresponding to ht(X,A) = H^X/Zp^/Zp-, Zp,).

The spectral sequence converging to ht(X) has E2b = 0 for b # 0, k0, kx.

Assuming 0 < kQ < kx = n we see E20 = ha(X) for any such X, if 0 < a

< k0. Hence by use of our example, Eq0 = Zp,; E20 = 0 for a > 0. Hence

E2k  = ha+k (X) for any such X, if a + k0 < kx. By use of our example,

4C = Ehl= °; El*o = zp for a >2- Finally>

£6>, = c^l(^5)®0 = Z^.

We obtain our result immediately for 0 < / <C n and / > n; for the case / = n

we argue as at the end of Lemma 2. The case k0 < 0 is handled similarly.

We now assume Theorem A for s — 1 and prove it for .s. Hence

Hi(Xz<'/Z s-i; Zp,) is known by induction. In particular,

Hl(Xz'/ZpS.r,Zpr) = 0   for i>ks.x.

Yet H^XlZp^X^IZ^Zpr) = 0 for 0 < / < V, by Lemma 2. The long
exact sequence for the pair (X/Zp^X^/Z,-,) then implies

H^X/Z^Zpr) = HA\XlZp„Xz'IZpS-x; Zp,)   for i > /c,_, + 2

and

//,.(Ayz^; Z,,) = HA\Xz'IZp^; Zp,)   for 0 < / < ks_x - 1.

This yields our result for all i except / = ks_x and i = fc^j + 1.

The same long exact sequence implies that

0 = Hkt_i + x(Xz?/ZpS-r,Zpr) -> Hks] + x(X/ZpS;Zpr)

-* Z,, -> Z,, -* H^JX/Z^Z,) -» 0

is exact. Hence //^ + j (X/ZpS; Z^) and #k (X/Zpl; Zpr) are both cyclic of the

same order.
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Assume that ks_2 < ks_x. Since p is odd, by [2, p. 129] A^_2 < A^_, — 2.

Hence the long exact sequence for the pair (X/Z s,XZp2/Z s-2) yields an exact

sequence

0 = Hk^(XZ^/ZpS.2;Zp,) -» HKx(X/Zp,;Zpr)

-» HksJX/ZpS,Xzr>/ZpS-2;Zpr) -» Hksx_x(Xzs/ZpS-2;Zpr) = 0.

Hence, by Lemma 3,

Hk,_x{X/Zp'''ZpD = zP°-i

and our theorem follows.

If ks_2 = ks_x but ks_3 < Ar5_], one deals similarly with the exact sequence

of the pair X/ZpS, Xzf'/Z s-3-   The general result is clear.

If p = 2 and ks_2 = ks_x — 1, then we obtain the exact sequence

0 -» HksJX/ZpS; Z^) -* Zf -» Hk!JXzrjZpS->;Zpr)

= Z^ -> Hki_2(X/Zp,;Zpr) = Z^.2 -> 0.

Hence, in this case,

Hks-l(X/zp>>zpr) = zP*-i = Hks_2(x/Zp'>zp^)-

Q.E.D.
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