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INERTIAL SUBALGEBRAS OF CENTRAL

SEPARABLE ALGEBRAS

NICHOLAS S. FORD1

Abstract. Let R be a commutative ring with 1. An A-separable subalgebra

B of an Ä-algebra A is said to be an /?-inertial subalgebra provided

B + N = A, where N is the Jacobson radical of A. Suppose A is a finitely

generated Ä-algebra which is separable over its center Z(A). We show that if

A possesses an Ä-inertial subalgebra B, then Z(A) possesses a unique R-

inertial subalgebra S. Moreover, A can be decomposed as A ~ B ®s Z(A).

Suppose C is a finitely generated, commutative, semilocal R-algebra with R-

inertial subalgebra S. We show that the R-inertial subalgebras of each central

separable C-algebra are unique up to an inner automorphism generated by

an element in the radical of the algebra if and only if the natural mapping of

the Brauer groups ß(S) -» ß(C) is a monomorphism. We conclude by

presenting a method which enables one to construct algebras which possess

nonisomorphic inertial subalgebras.

0. Introduction. All rings are assumed to be associative and to possess an

identity element 1. By an algebra A over a commutative ring /? (an /?-algebra

A) we mean a ring A together with a ring homomorphism from /? into Z(A),

the center of A. An /?-algebra A will be called central separable if it is

separable over /? and Z(A) = R. When we say an /?-algebra is finitely

generated or projective, we mean it is finitely generated or projective as an R-

module. The Jacobson radical of an /?-algebra A will be denoted by rad A.

Finally, by an /?-inertial subalgebra B of an /?-algebra A we mean an /?-

separable subalgebra B of A having the property that B + rad A = A.

1. Structure. Let A be a finitely generated /?-algebra which is separable over

its center. This section investigates the relationship between the /?-inertial

subalgebras of A and the /?-inertial subalgebras of its center.

Lemma 1.1. Let A be a finitely generated R-algebra which is separable over its

center C. If B is an R-inertial subalgebra of A, then B ■ C = A.

Proof. The assertion follows at once by an application of the original

Nakayama Lemma.
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Theorem 1.2. Suppose A is a finitely generated R-algebra which is separable

over its center C. Then an R-subalgebra B of A is an R-inertial subalgebra of A

if and only if:
(1) B is central separable over its center S;

(2) S is the unique R-inertial subalgebra of C; and

(3) A a¿ B ®s C as C-algebras.

Proof. Only if. First, since B is an /?-inertial subalgebra of A, and therefore

/?-separable, it follows that B is necessarily separable over its center S. Next,

it is immediate from Lemma 1.1 that 5 is included in C. To show S to be an

/?-inertial subalgebra of C it suffices to show that C = S + n, where n

= rad C. Let TV = rad A. We have by Azumaya [2, Corollary to Theorem 9],

that C n N C n. Furthermore, a straightforward application of Nakayama's

Lemma yields the opposite inclusion, so that C n N = n. In addition, since

A is separable over C, Z(A/N) = [C + N]/N. Similarly, ZiB/B n N)

= [S + B n N]/B n N. The following chain of isomorphisms is then clear:

[S + n]/n =a ZiB/B (1 N) sa ZiA/N) =s C/n.

Since the composite of these mappings is the identity, we conclude that

S + n = C. Being a direct summand of A, the algebra C is finitely generated

over /?. Separable (hence inertial) subalgebras of a finitely generated algebra

are themselves finitely generated (Sanders [10]). The uniqueness of 5 then

follows from Ingraham [7, Proposition 2.6], which states that any two finitely

generated inertial subalgebras of a finitely generated, commutative algebra

must coincide. Finally, we assert that the natural C-algebra mapping p.:

B ®s C —» A induced by u(è ® c) = b ■ c is an isomorphism. Since ¡x is onto

by Lemma 1.1, it suffices to show that u. is one-to-one. Let 31 = C n Ker/t.

Since B ®s C is central separable over C, it follows that

Ker/i = 91 • (fi ®5 C).

Now if a G 91, then 0 = jli(q) = ju,(a • 1) = a • jli(1) = a ■ 1 = a. Thus 9i

= (0), and therefore ¡i is one-to-one.

If. We first show that B is an /?-inertial subalgebra of B ®5 C. Being a

central separable S-algebra, B is S-projective and so can be identified as the

subalgebra B ®s 5 of B ®s C. Inasmuch as B ®5 C is central separable over

C, we have that rad (5 ®s C) = n • (5 ®s C) = fi ®s n. Therefore

fi®S +rad (fi®CJ = fi®,S-l-fi®n = fi®C.
s \   s    / s s s

Clearly B is separable over /? since, by assumption, 5 is separable over /?. Thus

B ®s S is an R-inertial subalgebra of B ®s C. It is well known that every

endomorphism of a central separable algebra is an automorphism. Thus the

existence of an isomorphism from B ®s C to A implies that the homomor-

phism jit, previously defined, is an isomorphism. Therefore B = p{B ®s S ) is

an P-inertial subalgebra of A.
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II. Uniqueness and the Brauer group. We say that the uniqueness statement

holds for the /?-inertial subalgebras of an /?-algebra A if corresponding to each

pair B and B' of /?-inertial subalgebras of A there is an element r¡ G tad A

such that B' = (I - r¡)B(l - -q) . Suppose C is a finitely generated, commu-

tative /?-algebra with /?-inertial subalgebra /?. We will show that under certain

conditions, saying that the uniqueness statement holds for the /?-inertial

subalgebras of every central separable C-algebra is equivalent to saying that

the natural mapping of the Brauer groups /?(/?) -» ß(C) is a monomorphism.

Proposition 2.1. If A is a finitely generated R-algebta with R-inertial subalge-

bra B, then every central idempotent of A is contained in B.

Proof. Let e E A be a central idempotent. It is easy to see that the

subalgebra B' = Be 8 B(l - e) is /?-separable. Clearly B C B'. Thus B'

+ xadA = A, which shows that B' is an /?-inertial subalgebra of A. Since A is

finitely generated over /?, so are B and B' (Sanders [10]). Moreover, finitely

generated and nested inertial subalgebras necessarily coincide (Ingraham [7,

Lemma 2.5]). Thus B = B', and e E B.

A commutative ring is said to be semilocal if it contains only a finite number

of maximal ideals. If a commutative ring has no idempotents but 0 and 1, it is

said to be connected. We will denote the Brauer group of a commutative ring

/? by ß(R) (Auslander and Goldman [1]). If C is a commutative /?-algebra,

there is a natural homomorphism: ß(R) -* ß(C) defined by [A] —> [A ®R C].

We will denote the kernel of this mapping by ß(C/R).

Theorem 2.2. Suppose R is a semilocal ring and C is a finitely generated,

faithful, commutative R-algebra with R an R-inertial subalgebra of C. Then the

uniqueness statement holds for the R-inertial subalgebras of every central

separable C-algebra if and only if ß(R) —> ß(C) is a monomorphism.

Proof. It is well known that finitely generated, commutative, semilocal

rings may be decomposed as a finite direct sum of connected semilocal rings.

Thus we may write C = © 2"=i C¡, where each C¡ is connected. This in turn

induces a decomposition on any C-algebra A as © 2"=i A¡, where each A¡ is

(central) separable over C¡ if and only if A is (central) separable over C.

Moreover, in view of Proposition 2.1, R may be decomposed as © 2/L] R¡>

where each R¡ is connected, semilocal, and an /?,-inertial subalgebra of C¡. In

this context it is straightforward to verify the following two assertions.

(1) The uniqueness statement holds for the /?-inertial subalgebras of every

central separable C-algebra if and only if it holds for the /?(-inertial subalge-

bras of every central separable C;-algebra, for every /' < n.

(2) The natural mapping of the Brauer groups ß(R) -» ß(C) is a monomor-

phism if and only if the natural mapping of the Brauer groups /?(/?,) -* ß(C()

is a monomorphism, for every i < n.

In light of this we may assume, without loss of generality, that C is a

connected /?-algebra. Let us first suppose that the uniqueness statement holds
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for all central separable C-algebras. It is well known that finitely generated

and projective modules over a connected and semilocal ring are free of finite

rank. Hence if [B] G ßiC/R) then B ®s C ^ Mn(C), where Mn(C) denotes

the n X n matrix algebra over C. Since the subalgebras B and Mn(R) of Mn(C)

are central separable over /?, it follows from Theorem 1.2 that each is an /?-

inertial subalgebra of Mn(C). Thus B ~ Mn(R) by assumption, so that

ß(R) —> ß(C) is a monomorphism.

Conversely, suppose ß(R ) —> ß(C ) is a monomorphism. Let B and B' be /?-

inertial subalgebras of a central separable C-algebra A. Then

B ®RC ca fi' ®Ä C

by Theorem 1.2, so that [B ®R C] = [B' ®R C] in ß(C). By hypothesis, this

implies that [B] = \B'\ in ß(/?). Since /? is semilocal and connected it follows

by DeMeyer [4, Corollary 1], that there exists a representative D G [B] unique

up to isomorphism, possessing no idempotents except 0 and 1, such that

B ~ MU(D) and B' sí M¡(D) as fi-algebras for uniquely determined integers

u and t. Thus MU(D) ®R C a; Mr(D) ®fi C and, since Z) ®Ä C is a central

separable C-algebra, dimensionality arguments allow us to conclude that

u = t. Hence there is an isomorphism from B to B' which we denote by / We

note that the mapping / ® 1 : B ®R C -» B' ®R C induced by

/® 1(6® c) =f(b) ®c

is a C-algebra isomorphism. In view of Theorem 1.2, the multiplication maps

u: B ®R C —> A and /x': B' ®R C -* A are also C-algebra isomorphisms.

Therefore by [9], Roy and Sridharan's generalization2 of the Skolem-Noether

Theorem, there exists an inner automorphism 9 of A such that \i = 9

° (p! ° /® 1). It follows that

B = p(B ®R R) = 9(p'(f® \(B ®R /?))) = 9(p.'(B' ®R /?)) = 9(B').

Suppose 9(x) = wxw~]. Since A = B + N, where N = rad A, we can repre-

sent w as w = v + y\ where v G B and tj G Ar. Now vw-1 = 1 + r¡v~l, and

so is of the form 1 - r where r G N. Then

(wf"1)«^-1)"1 = w(v~xBv)w~x = vvfiw-1 = fi'.

Azumaya has shown [2] that the uniqueness statement holds for the inertial

subalgebras of any finitely generated algebra over a Hensel ring. It is by no

means true that the uniqueness statement holds in general. In fact, as we are

about to show, the inertial subalgebras of an algebra need not even be

isomorphic.

Let /? be a local (noetherian) domain with maximal ideal m. Let S be an

2 The hypothesis in [9] that the ground ring is noetherian may be deleted without altering the

conclusion.
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extension of R which is finitely generated as an /?-module. Define the (finitely

generated) /?-subalgebra C of S by C = R + /, where / = m • S. We see that

I2 Q m ■ C ç rad C. Moreover, C/I ä /?/m. Hence / = rad C, showing C to

be a local ring with maximal ideal /.

Theorem 2.3. Let R be an integrally closed, local, noetherían domain with

maximal ideal m ¥= 0. Suppose ß(R) # 0, and that the quotient field of R is a

finite algebraic number field. Then for each nontrivial representative A G ß(R )

there exists a finitely generated, commutative R-algebra C such that A ®RC has

nonisomorphic R-inertial subalgebras.

Proof. For each (nontrivial) representative A E ß(R) there exists a finitely

generated, free, commutative, and separable splitting algebra S (Auslander

and Goldman [1, Theorem 6.3]). Since 5 may be assumed to be connected

without loss of generality, it follows from Janusz [8, Corollary 4.2], that S is,

moreover, an integral domain. Define C = R + m • S. Since m ¥= 0, the

quotient field of both S and of C is L = Q(S ), where Q is the rational number

field. One then obtains the following commutative diagram:

ß(Q -y ß(L)

Since L is a finite algebraic number field, it follows from Childs [3, Corollary

4.3], that the mappings ß(C) -» ß(L) and ß(S) -» ß(L) are one-to-one. Thus

ß(C)-*ß(S) is one-to-one, so that ß(S/R) = ß(C/R). Therefore A

E ß(C/R) and, inasmuch as C is local, A ®RC ^ Mn(C) for some integer n.

We see, by Theorem 1.2, that both A and Mn(R) are /?-inertial subalgebras of

A ®R C. However, by its definition, A cannot be isomorphic to Mn(R).

Corollary 2.4. There exist local extensions C of R which contain R as an R-

inertial subalgebra, and which afford matrix algebras over C possessing noniso-

morphic R-inertial subalgebras.

Corollary 2.5. There exist local extensions C of R which have the same

residue class field as R, but such that ß(R) —* ß(C) is not a monomorphism.

A specific example where this phenomenon occurs is: /? = Z,5>, C = Z,5\

© i5Z,ci, S = Z,5X © iZ<5\, and A = the quaternion algebra over Z^y, where

/ = — 1. A discussion of generalized quaternion algebras may be found in

Dickson [5].
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