A REDUCIBILITY CONDITION FOR RECURSIVENESS¹

PAUL H. MORRIS

ABSTRACT. A result due to Jockusch, equating recursiveness of a set to a reducibility condition on its jump, is sharpened.

Introduction. Unexplained notation is taken from Rogers [5]. In an unpublished proof in 1970, Carl Jockusch showed that if $A' \leq_{\text{btt}} \emptyset'$ then A is recursive (the converse is immediate). A short proof of an indirect nature was later obtained by Gordon Phillips, a student of Jockusch. This paper gives a fairly direct proof of a more basic result from which that of Jockusch follows immediately.

We write $A \oplus B$ for the set $\{2x: x \in A\} \cup \{2x+1: x \in B\}$. Following Soare [6] set $H_A = \{e: W_e \cap A \neq \emptyset\}$. In the context of A co-r.e. Soare has called H_A the "weak jump" of A. For general A it seems appropriate to give this name to $H_A \oplus H_{\overline{A}}$ (if A is co-r.e. and nonempty then $H_A \equiv H_A \oplus H_{\overline{A}}$). The relationship of the weak jump and S-reducibility [2] is analogous to that of the jump and Turing reducibility. H_A has been studied by Hay [3], [4] and Soare [6], [7] and has been involved in a number of interesting relationships.

Let t be the tt-condition $\langle \langle x_1, \dots, x_n \rangle, \alpha \rangle$ (see [5, p. 110]). We denote the associated set $\{x_1, \dots, x_n\}$ by F_t . If $\alpha(0, \dots, 0) = 0$ we say t is zero-preserving.

Results.

THEOREM 1. If A is r.e. and $H_{\overline{A}} \leq_{\text{btt}} \emptyset'$ then A is recursive.

PROOF. Let n be the least integer such that $H_{\overline{A}} \leq_{\text{btt}} \emptyset'$ with norm bounded by n. Let h be a recursive function such that $e \in H_{\overline{A}} \Leftrightarrow$ the tt-condition h(e) is satisfied by \emptyset' , and each h(e) has norm bounded by n. Assume A nonrecursive. Define

$$W_{f(e,x)} = \begin{cases} W_e & \text{if } x \in \emptyset', \\ \emptyset & \text{otherwise.} \end{cases}$$

Note that if $x \in \emptyset'$ then $f(e,x) \in H_{\overline{A}} \Leftrightarrow e \in H_{\overline{A}}$. Define $W_{g(e,y)} = W_{e} \cup \{y\}$. If $y \in A$ then $g(e,y) \in H_{\overline{A}} \Leftrightarrow e \in H_{\overline{A}}$. Fix e. Set

Received by the editors August 25, 1975.

AMS (MOS) subject classifications (1970). Primary 02F25, 02F30.

¹ This work was supported by NRC grant 126-6324-32.

$$B_1 = \{ f(e, x) : x \in \emptyset' \text{ and } F_{h(f(e, x))} \cap \emptyset' \neq \emptyset \},$$

$$B_2 = \{ g(e, y) : y \in A \text{ and } F_{h(g(e, y))} \cap \emptyset' \neq \emptyset \}.$$

Note that B_1 and B_2 are r.e. Put $B = B_1 \cup B_2$. We will show that B is nonempty.

Observe that for any u, if $F_{h(u)} \cap \emptyset' = \emptyset$, then $u \in H_{\overline{A}} \Leftrightarrow h(u)$ is not zero-preserving. We distinguish two cases:

Case 1. $e \in H_{\overline{A}}$. Then $x \in \emptyset' \Leftrightarrow f(e, x) \in H_{\overline{A}}$. Thus if $F_{h(f(e, x))} \cap \emptyset' = \emptyset$ we have $x \in \overline{\emptyset}' \Leftrightarrow h(f(e, x))$ is zero-preserving.

Suppose $B_1 = \emptyset$. Then $F_{h(f(e,x))} \cap \emptyset' \neq \emptyset \Rightarrow x \in \overline{\emptyset}'$. Putting these together we get $x \in \overline{\emptyset}' \Leftrightarrow F_{h(f(e,x))} \cap \emptyset' \neq \emptyset$ or h(f(e,x)) is zero-preserving. This implies $\overline{\emptyset}'$ is r.e., a falsehood. Thus $B_1 \neq \emptyset$.

Case 2. $e \notin H_{\overline{A}}$. In this case $y \in A \Leftrightarrow g(e,y) \notin H_{\overline{A}}$. Consequently if $F_{h(g(e,y))} \cap \varnothing' = \varnothing$ we have $y \in \overline{A} \Leftrightarrow h(g(e,y))$ is not zero-preserving. Assuming $B_2 = \varnothing$ now gives $y \in \overline{A} \Leftrightarrow F_{h(g(e,y))} \cap \varnothing' \neq \varnothing$ or h(g(e,y)) is not zero-preserving. It follows that A is recursive, contrary to supposition. Here we conclude $B_2 \neq \varnothing$.

Now let z be the first element in an enumeration of B. Since $F_{h(z)} \cap \emptyset' \neq \emptyset$ we can form a tt-condition t with norm bounded by n-1 such that t is satisfied by $\emptyset' \Leftrightarrow h(z)$ is satisfied by $\emptyset' \Leftrightarrow e \in H_{\overline{A}}$.

Redefining h(e) = t we see that $H_{\overline{A}} \leq_{\text{btt}} \emptyset'$ with norm bounded by n - 1, contradicting the minimality of n. We conclude that A is recursive. Q.E.D.

Note that the above proof does not supply a decision procedure for A. Theorem 1 confirms a conjecture of Hay [3].

THEOREM 2. If $H_A \oplus H_{\overline{A}} \leqslant_{\text{btt}} \emptyset'$, then A is recursive.

PROOF. If $H_A \oplus H_{\overline{A}} \leqslant_{\text{btt}} \emptyset'$ then $A \leqslant_{\text{btt}} \emptyset'$.

By [5, Theorem 14-IX] A is a Boolean combination of r.e. sets. It follows from Ershov [1] that there are r.e. sets R_1, \ldots, R_n such that $R_1 \subseteq \cdots \subseteq R_n$ and

$$A = \begin{cases} \bigcup_{i=1}^{n/2} (R_{2i} - R_{2i-1}) & \text{if } n \text{ is even,} \\ R_1 \cup \bigcup_{i=1}^{(n-1)/2} (R_{2i+1} - R_{2i}) & \text{if } n \text{ is odd.} \end{cases}$$

We will prove the theorem by induction on n. For n=1 the result follows from Theorem 1. Suppose n>1. Let f enumerate R_n . Let $B=f^{-1}(\overline{A})$. Then $B \leq_m \overline{A}$. Hence $H_B \leq_1 H_{\overline{A}}$ and $H_{\overline{B}} \leq_1 H_A$ and so $H_B \oplus H_{\overline{B}} \leq_{\text{btt}} \emptyset'$.

Let
$$S_i = f^{-1}(R_i), 1 \le i \le n - 1$$
. Then

$$B = \begin{cases} \bigcup_{i=1}^{(n-1)/2} (S_{2i} - S_{2i-1}) & \text{if } n-1 \text{ is even,} \\ S_1 \cup \bigcup_{i=1}^{(n-2)/2} (S_{2i+1} - S_{2i}) & \text{if } n-1 \text{ is odd.} \end{cases}$$

The inductive hypothesis now yields B is recursive. It follows that A is r.e. By Theorem 1, A is recursive. Q.E.D.

272 P.H. MORRIS

COROLLARY (JOCKUSCH). If $A' \leq_{\text{btt}} \emptyset'$ then A is recursive.

PROOF. Clearly $H_A \leqslant_1 A'$ and $H_{\overline{A}} \leqslant_1 A'$. The result follows.

Closing remarks. In view of Theorem 2, it might be supposed that $H_A \leq_{\text{btt}} \emptyset' \Leftrightarrow A$ r.e. This is false, as is demonstrated by an elaborate construction in [3].

The author is grateful to Louise Hay and the referee for comments which have improved the presentation of these results.

REFERENCES

- 1. Ju. L. Ersov, On a hierarchy of sets. I, Algebra i Logika 7 (1968), no. 1, 47-74 = Algebra and Logic 7 (1968), 25-43. MR 42 #5794.
- 2. J.T. Gill and P.H. Morris, On subcreative sets and S-reducibility, J. Symbolic Logic 39 (1974), 669-677.
- 3. L. Hay, A noninitial segment of index sets, J. Symbolic Logic 39 (1974), 209-224. MR 50 #6813.
- 4. —, The halting problem relativized to complements, Proc. Amer. Math. Soc. 41 (1973), 583-587. MR 48 #5837.
- 5. H. Rogers, Jr., Theory of recursive functions and effective computability, McGraw-Hill, New York, 1967. MR 37 #61.
 - 6. R.I. Soare, Degrees and structure of speedable sets, Abstract, January, 1974 (preprint).
- 7. ——, Automorphisms of the lattice of recursively enumerable sets, Bull. Amer. Math. Soc. 80 (1974), 53-58.

Department of Computer Science, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

Current address: 2901 Hillegass #2, Berkeley, California 94705