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A REDUCIBILITY CONDITION FOR RECURSIVENESS!

PAUL H. MORRIS

ABSTRACT. A result due to Jockusch, equating recursiveness of a set to a
reducibility condition on its jump, is sharpened.

Introduction. Unexplained notation is taken from Rogers [5]. In an unpub-
lished proof in 1970, Carl Jockusch showed that if 4" <, &’ then 4 is
recursive (the converse is immediate). A short proof of an indirect nature was
later obtained by Gordon Phillips, a student of Jockusch. This paper gives a
fairly direct proof of a more basic result from which that of Jockusch follows
immediately.

We write 4 @ B for the set {2x: x € A} U {2x + 1: x € B}. Following
Soare [6] set H, = {e: W, N A # J}. In the context of A co-r.e. Soare has
called H, the “weak jump” of 4. For general A it seems appropriate to give
this name to H, ® Hy (if 4 is co-r.e. and nonempty then H, = H, ® Hy).
The relationship of the weak jump and S-reducibility [2] is analogous to that
of the jump and Turing reducibility. H, has been studied by Hay [3], [4] and
Soare [6], [7] and has been involved in a number of interesting relationships.

Let ¢ be the tt-condition {{x,,...,x,),a) (see [5, p. 110]). We denote the
associated set {x,,...,x,} by F. If «(0,...,0) = 0 we say 1 is zero-preserving.

Results.
THEOREM 1. If A is r.e. and Hy <, 3’ then A is recursive.

PROOF. Let n be the least integer such that Hy <, &’ with norm bounded
by n. Let h be a recursive function such that e € Hy < the tt-condition h(e)
is satisfied by @', and each h(e) has norm bounded by n. Assume A
nonrecursive. Define

W oifx e @&,

W ==
flex) & otherwise.

Note that if x € &’ then f(e,x) € Hy < e € Hy. Define Weer) =W
U {y}.If y € 4 then g(e,y) € Hy < e € Hy. Fix e. Set
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Bl = {f(e,X): X € gl and Et(f(e,x)) N g’ #* @},
B, = {g(e,y):y € A and Fyp(, )y N &' + T}

Note that B, and B, are r.e. Put B = B, U B,. We will show that B is
nonempty.

Observe that for any u, if F,) N &' = &, then u € Hy < h(u) is not zero-
preserving. We distinguish two cases:

Case 1. e € Hy. Then x € &' < f(e,x) € Hy. Thus if Fyflex) N D'
= & we have x € &' < h(f(e, x)) is zero-preserving.

Suppose B, = . Then Fy;(, ) N @' # &= x € &'. Putting these to-
gether we get x € &' < Fyjex)) N 3" # D or h(f(e, x)) is zero-preserving.
This implies & is r.e., a falsehood. Thus B, # &.

Case 2. e & Hy. In this case y € 4 < g(e,y) &€ Hy. Consequently if
[';,(g(e N = Q we have y € 4 < h(g(e,y)) is not zero-preserving. As-
suming B, = & now givesy € 4 & E,(g(e y) N B # D or h(g(e,y)) is not
zero-preserving. It follows that A4 is recursive, contrary to supposition. Here we
conclude B, # &.

Now let z be the first element in an enumeration of B. Since Fp N g+
we can form a tt-condition ¢ with norm bounded by n — 1 such that ¢ is
satisfied by @’ < h(z) is satisfied by &’ < e € Hy.

Redefining h(e) = t we see that Hy <, &’ with norm bounded by n — 1,
contradicting the minimality of n. We conclude that A4 is recursive. Q.E.D.

Note that the above proof does not supply a decision procedure for 4.
Theorem 1 confirms a conjecture of Hay [3].

THEOREM 2. If Hy ® Hy <, &', then A is recursive.

PrROOF. If H; ® Hy <, &' then 4 <, &'.
By [5, Theorem 14-IX] A4 is a Boolean combination of r.e. sets. It follows

from Ershov [1] that there are r.e. sets R, ..., R, such that R, C -+ C R,
and
4= U"/ 21 (Ry; — Ry_y) if n is even,
R U U DV2(R,, —Ry)  if nisodd.

We will prove the theorem by induction on n. For n = 1 the result follows
from Theorem 1. Suppose n > 1. Let f enumerate R,. Let B = f ~1(Z). Then
B <,, A. Hence Hy <, Hyand Hy <; H, and so Hy ® Hp <, J'.

Let S; = f'(R), 1 <i < n— 1 Then

5 U D28y, — Syy) if n — 1is even,
S, U UnPs,, - S,)  ifn— 1isodd.

The inductive hypothesis now yields B is recursive. It follows that 4 is r.e. By
Theorem 1, A is recursive. Q.E.D.
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COROLLARY (JoCKUSCH). If A" <, &' then A is recursive.
ProOF. Clearly H, <; A’ and Hy <; A’. The result follows.

Closing remarks. In view of Theorem 2, it might be supposed that H,
pi B’ © A r.e. This is false, as is demonstrated by an elaborate construction
in [3].

The author is grateful to Louise Hay and the referee for comments which
have improved the presentation of these results.
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