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THE DIMENSION OF A COMPARABILITY  GRAPH

W. T. TROTTER, JR., JOHN I. MOORE, JR. AND DAVID P. SUMNER

Abstract. Dushnik and Miller defined the dimension of a partial order P

as the minimum number of linear orders whose intersection is P. Ken Bogart

asked if the dimension of a partial order is an invariant of the associated

comparability graph. In this paper we answer Bogart's question in the

affirmative. The proof involves a characterization of the class of comparabil-

ity graphs defined by Aigner and Prins as uniquely partially orderable

graphs. Our characterization of uniquely partially orderable graphs is

another instance of the frequently encountered phenomenon where the

obvious necessary condition is also sufficient.

1. Notation and definitions. In this paper we consider a partial order as an

irreflexive, transitive binary relation. With a binary relation R on a set A we

associate a graph G(R) whose vertex set is A with distinct vertices x and y

joined by an edge iff x R y or y R x. A graph G is called a comparability graph

if there exists a partial order P for which G = G(P). Aigner and Prins [1]

called a comparability graph G a uniquely partially orderable (UPO) graph if

G = G(P) = G(Q) implies P = Q or P = Q where Q denotes the dual of Q.

Let A' be a graph and let {Gx\x G V(X)} be a family of graphs. Then the

(Sabidussi) A-join [9] of this family is the graph with vertex set {(x,.}')|

x G V(X), y G V(GX)} with (x,y) adjacent to (z, w) iffx is adjacent to z in

X or x = z and y is adjacent to w in Gx. Every graph X is isomorphic to the

Adjoin of a family of trivial graphs. If a graph G is isomorphic to the A-join of

a family {Gx\x G V(X)} whereX is nontrivial and at least one Gx is nontrivial,

then G is said to be decomposable; otherwise G is said to be indecomposable.

Let G be a graph and let AT be a subset of V(G). K is said to be partitive iff

for every vertex x with x G K, if there exists a vertex y G K such that x and

y are adjacent, then x is adjacent to every vertex in K. A partitive subset K is

said to be nontrivial when K is not the empty set, a singleton, or the entire

vertex set. It is easy to see that a graph is indecomposable iff it has no

nontrivial partitive sets.

Now let P be a partial order on a set A and let {Qa\a G A) be a family of

partial orders. If we denote the set on which each Qa is defined by Aa, then

the ordinal product [2] of this family over P is the partial order S on the set

{(a,b)\a G A,b G Aa) in which (al,bl)S{a2,bi) iff ax P a2 or ax = a2 and

bx Qö| b2. Clearly the comparability graph G(S) is the G(P)-]oin of the family

{G(Qa)\a G A).
Let e and/be edges of a graph G. Gilmore and Hoffman [6] defined a strong
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path from e to /as a sequence of (not necessarily distinct) vertices x0, xx, x2,

..., xn with n > 2 satisfying:

(i){x0,xx] = e,{xn_x,x„] = /,

(ii) {x,,x, + 1} G E(G) for 0 < i < n - 1,

(iii) {x,,x,+2} g £(G) for 0 < i < n - 2.

Edges e and / are said to be strongly connected, denoted e ~ f, when there

exists a strong path from e to /. The binary relation ~ is an equivalence

relation on E(G) and is used in [4] and [6] to provide a transitive orientation

for a comparability graph (see also [7]).

The following lemma is an immediate consequence of the results of Gilmore

and Hoffman [6].

Lemma 1. Let e be an edge of a graph G and let K be the set of all vertices of

G which are endpoints of an edge in the equivalence class of e under ~. Then K

is a partitive set of vertices in G.

For a binary relation R on a set A and a subset B C A, let R(B) denote the

restriction of B to A. The following lemma is proved in [6].

Lemma 2. Let e = [x,y] and f = [z,w] be strongly connected edges of a

comparability graph G. Let P and Q be partial orders so that G = G(P)

= G(Q). Then P({x,y}) = Q({x,y}) iffP({z,w}) = Qi{z,w}).

2. A characterization of UPO graphs. In this section we characterize UPO

graphs. Our theorem will be another instance of the common phenomenon

where the obvious necessary condition is also sufficient. We begin by repeating

Aigner and Prins' observation [1] that a disconnected comparability graph is

UPO iff it has at most one nontrivial component and that component is also

UPO. Consequently we restrict our attention to connected graphs.

Theorem 1. A connected comparability graph is UPO iff every nontrivial

partitive subset is an independent set of vertices.

Proof. Let G be a connected comparability graph with a nontrivial partitive

subset K which contains an edge of G. Choose a vertex x0 G K, a partial order

P0 on (G - K) U {xq}, and a partial order P, on K. Then define a partial

order P on G by: If x, y G K, then x P y iff x Px y, if x, y G G — K, then

x P y iff x Pq y, if x G K, y G G - K, then x P y iff x0 P0 y, and if x

G G — K, y G K, then x P y iff x P0 x0. Then define a partial order Q on G

by Q = (P - PiK)) U P(K). It follows easily that P =¿ Q and P # Q and
thus G is not UPO.

On the other hand, let G be a connected comparability graph in which every

nontrivial partitive subset is an independent set of vertices. We prove that G

is UPO. To accomplish this, we first prove that there is only one equivalence

class in E(G) under ~. The fact that G is then UPO follows immediately from

Lemma 2.

Choose an arbitrary edge e in G. It follows from Lemma 1 and the fact that

G is connected that every vertex in G is the endpoint of an edge from the

equivalence class of e. Suppose that there exists an edge/ = {x,y} which is not

strongly connected  to e.  Choose an edge ex = {x, z) with e ~ ex. Then
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e2 = {y,z) e E(G) for if {y,z} £ E(G), then z, x, y is a strong path from t?,

to/.

Suppose first that e2 ~ ex. We now show that z is adjacent to every other

vertex in G. Assume that this is not the case and choose an arbitrary vertex

w with w not adjacent to z. Then choose an edge e3 = {t, w) with / ~ e3 and

a strong path xQ, xx, x2, ..., xn from / to e3. We prove by induction that

{z,x¡} G E(G) and {z,w¡] ~ ex for 0 < / < n. First note that each edge

{xj,xi+x} is strongly connected to / for 0 < / < n - 1. We then note that

{z,x0} and {z,xx} are edges in G and each is strongly connected to ex. Now

suppose that for some i with 1 </'<«- 1 we have {z,x¡} E E(G) and

{z,x¡} ~ e,. Then if {z,xi+x} & E(G), it follows that z, x¡, xi+x is a strong

path from {z,x¡) to {x,,x,+1} and, hence, /~ {x¡,xi+x} ~ {z,x,} ~ e, ~ e.

We conclude that {z,jc,+1} is an edge in G. Furthermore, we may conclude that

{z,xi+x) ~ ex since {z,xi+x} ~ (z, x,_j}. The inductive argument shows that z

is adjacent to w and hence to every other vertex in G. It follows that the set

K = V(G) - {z} is a nontrivial partitive set containing the edge / The

contradiction shows that e2 -t- ex.

However it is straightforward to repeat the argument to show that the

assumption that e2 -+- e, leads to the conclusion that y is adjacent to every

other vertex in G and thus the set V(G) - {y} is a nontrivial partitive set

containing ex. The contradiction completes the proof of our theorem.

3. The dimension of a comparability graph. Dushnik and Miller [3] defined

the dimension of a partial order P, denoted Dim P, to be the minimum number

of linear orders whose intersection is P. We note that if P is a partial order on

a set X, then DimP(F) < Dim P for every Y Q X and Dim/5 = Dim P. We

refer the reader to [3] and [10] for elementary properties of the dimension of

partial orders.

If P and Q are partial orders for which G(P) = G(Q), Bogart asked if it is

always true that Dim/' = DimQ. The characterization of UPO graphs given

in the preceding section will allow us to answer this question in the affirmative.

A partial order F on a set X is said to be irreducible if Dim P(X - x)

< Dim P for every x E X. Hiraguchi [8] proved that if P is a partial order on

a set X = {xx,x2,... ,xn] and 5 is the ordinal product over P of the family

{Qx |1 < i < n) of partial orders then

Dim5 = max{Dim/>, DimôX|, Dimß^,..., Dimß^}.

It is easy to show that the comparability graph of an irreducible partial

order is indecomposable!

Theorem 2. // P and Q are partial orders so that G(P) = G(Q), then

DimP = DimQ.

Proof. Suppose the theorem is false and choose partial orders P and Q on

a set X so that Dim/1 < DimQ but |A'| is minimum, i.e. DimP(Y)

= Dimg(y) for every proper subset Y Q X. It follows then that Q is

irreducible since Dim Q(X - x) = Dim P(X - x) < Dim P < Dim Q and

thus G(Q) is indecomposable. Since G(Q) is indecomposable, it is UPO and

thus either P = Q or P = Q. In either case Dim P < Dim Q is not possible.
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Added in proof. The authors have learned that Theorem 1 was discovered

previously by Shevrin and Filippov, Partially ordered sets and their comparabil-

ity graphs, Siberian Math. J. 11 (1970), 497-509.
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