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OVER A PYTHAGOREAN FIELD1

BURTON FEIN AND MURRAY SCHACHER

Abstract. Let L be a proper finite Galois extension of a field K and let D

be a division algebra with center K. If every subfield of D properly

containing K contains a A"-isomorphic copy of L, it is shown that K must be

Pythagorean, L ai X^V- 1 ), and D is the ordinary quaternions over K. If

one assumes only that every maximal subfield of D contains a A" isomorphic

copy of L, then, under the assumption that [D : K] is finite, it is shown that

K is Pythagorean, L = #(V— 1 ), and D contains the ordinary quaternions

over K.

Let AT be a field and L a finite-dimensional Galois extension of K. Suppose

D is a division algebra with center K having the property that every maximal

subfield of D contains a ÄT-isomorphic copy of L. We ask what can be

concluded about D, K, and L. In [1] Herstein considered the case where L is

quadratic over K; he concluded then that K is Pythagorean, L = K(V — 1 ),

and D d Qk, the ordinary quaternion algebra over K. A Pythagorean field is

a field which is formally real in which every sum of squares is a square. The

ordinary quaternion algebra QK is the K algebra K + Ki + Kj + Kk subject

to the relations: i2 = j2 = k2 = -I, ij = —ji = k, jk = -kj = i, ki = - ik

-/•
In this paper we prove the following two theorems, both of which should be

viewed as generalizations of [1].

Theorem 1. Let L be a proper finite Galois extension of K and let D be a

division algebra with center K, Q ^ K. Suppose that every subfield of D

properly containing K contains a K-isomorphic copy of L. Then K is

Pythagorean, L = K(V — 1 ), and D is the ordinary quaternion algebra QK.

Theorem 2. Let L be a proper finite Galois extension of K and let D be a

finite-dimensional division algebra with center K, D ¥= K. Suppose that every

maximal subfield of D contains a K-isomorphic copy of L. Then K is

Pythagorean, L = Ä"(V — 1 ), and D contains the ordinary quaternions over K.

Before proving these results we need a lemma which is presumably well

known, but for which we have not been able to find a convenient reference.
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Lemma 1. Let K be a field. Then K is Pythagorean if and only if QK is a

division algebra and every maximal subfield of QK is K-isomorphic to

K(V^\).

Suppose K is Pythagorean. Then QK is a division algebra since - 1 is not a

sum of two squares in K. Let A"(V7) be a maximal subfield of QK. Then

A"(V7) splits QK and so  —1  is a sum of two squares in A"(v7). Thus

— 1 = (a + b\Tt)2 where a, b, c, d, t G K, v7 G K. Expanding and using

the Pythagorean property of K we have — 1 = u2 + u2t, u, v G K. .Thus t =

- w2, w G K, so K(\Tt ) = KiV — 1 ) as desired. Conversely, assume QK is a

division algebra having, up to isomorphism, a unique maximal subfield. Let

/ G K. Then since
.-   2

- 1 = - 1 - t2 + t2 = (y-(l + t2) ) + t2,

A"(\/-(l + t2)) splits QK. Thus AT(\/-(1 + t2)) is a maximal subfield of

QK and so /C(\/-(l + '2)) = A^V^T ). This implies that 1 + t2 is a square

in A" for all ? G AT. Thus if u, v are nonzero elements of K then w2 + v2

= u2(\ + v2/u2) is a square in K. It follows that AT must be Pythagorean

since QK is a division algebra.

We now turn to the theorems.

Proof of Theorem 1. Since every subfield of D containing K contains a

A"-isomorphic copy of L, we must have [L : K] = p, a prime. Let a G D such

that K(a) is ÄT-isomorphic to L and let a generate the Galois group of A" (a)

over K. By the Skolem-Noether theorem [2, Theorem 4.3.1, p. 99], there is a

8 G D such that 8 _1a«5 = a(a). Since L ¥= K, o(a) ¥= «. We write Irr(a, K)

for the irreducible polynomial of a over K. Since [K(a) : K] = p, 8P com-

mutes with a. If 8P G K, then A"^) contains a A"-isomorphic copy of L and

so Irr(a, K) splits into linear factors in K(8P). Since K(a, 8P) is a field and a

is a root of Irr(a, K) in A"(a, 8P) we must have a G K(8P). But A^S')

C K(8) so a G AT(o) and S_1a5 = a, a contradiction. Thus 8P G K. Let

¿>0 = {2?~0Vk e *"(«)}■ Then D0 c D and Z>0 is ÄMsomorphic to the
cyclic algebra (Kia)/K, o, 8P).

Let CDiD0) denote the centralizer in D of D0. By [2, Theorem 4.4.2, p. 112],

D sí D0 ®KCDiD0). If CDiD0) 7e A", then CD(D0) is a nontrivial division

ring. Let £ be a maximal subfield of CD(D0). Then E contains a A>

isomorphic copy of L and so D D K(ct) <8>K L. Since A"(a) s L, D

D L ®K L. This is a contradiction since L®K L has zero divisors. Thus

Q,(Ai) = A" and so Z) = D0. We have established that [D : K] = /j2 and

Z) = (A"(a)/A", a, 5P). In particular, AT(fj) is a maximal subfield of D and so

A"(5) » L. Since ô' G A", the characteristic of A" cannot be/>. Since K(8) is a

Galois extension of K of degree/) and 8P G K, K must contain a primitiveplh

root of unity. Also, Irr(ô, K) — xp — 8P. Since A"(a) is A"-isomorphic to

A^(ô), some element of K(a) is a root of Irr(ô, A'). We clearly may assume

that this element is a and so ap = 8P. Since 8~la8 G A" (a) and 8~la8 is a

root of Irr(a, A"), we must have 8 ~la8 = fa where f is a primitive pth root of

unity in K. An easy induction proves that (aô-1)" = £"("-0/2ang-n for
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n > 1. Up is odd, then f^-»/2 = 1 and so (aô_1y = ap8~p = 1. Since a:

contains all/?th roots of unity, aô~l G Kand so aô = da. This is a contradic-

tion and so p = 2. In this case we have (aó--1)2 = - a25~2 = — 1. Since

a8~l g K, K(\rzrl ) is a subfield of D and so L s A^V^T ). Without loss

of generality we may assume that a2 = - 1 and so S2 = — 1. Since (a<5 ~')2 =

— 1, ad _1 = — 5 ~'a and so Z) is the ordinary quaternions over K. Finally,

since all maximal subfields of D are A"-isomorphic to L s A"(V — 1 ), K is

Pythagorean by the lemma. This proves Theorem 1.

Proof of Theorem 2. If every subfield of D properly containing K

contains a A"-isomorphic copy of L, we are finished by Theorem 1. Assume

that £ is a subfield of D, E, properly containing K, and E is maximal with

respect to not containing a A-isomorphic copy of L. E exists because [D : K]

is finite. Then CD(E) satisfies the hypotheses of Theorem 1 and so E is

Pythagorean, EL = E(V — 1 ), and CD(E) is the ordinary quaternions over

E, CD(E) = QE. Since QE s QQ ®fi E, QED QQ®QK= Qk and so D D

QK. K is formally real since E is. Suppose L sé AT(V — 1 ). Then take F a

subfield of Z), F d AT(V — 1 ), F maximal with respect to not containing a

ÄT-isomorphic copy of L. Then CD(F) satisfies the hypotheses of Theorem 1

so CD(F) = QF. But V — 1 G F so QF has zero divisors. Thus CD(F) has

zero divisors, a contradiction. It follows that L = A"(V — 1 ). Finally, we

must show that K is Pythagorean. In view of the results already obtained and

the lemma, we need only show that every maximal subfield of QK is

ÄT-isomorphic to A"(V — 1 ). Let F be a maximal subfield of QK. If

V & AT(V - 1 ) we may take W a subfield of D, W d V, W maximal with

respect to V — 1 G W. Since L s A"(V — 1 ) CD(W) satisfies the hypotheses

of Theorem 1 so CD(W) = Qw. But W D V and V splits QK so Qw has zero

divisors. This contradiction completes the proof of Theorem 2.

The following corollary is immediate from Theorem 1.

Corollary 3. Let D be a division algebra finite dimensional over its center

K. If all maximal subfields of D are Galois over K and are K-isomorphic, then

K is Pythagorean and D is the ordinary quaternions over K.

There are some natural questions open to generalization concerning the

results above. Among these the most tantalizing seem to be:

(1) Can the assumption of normality of L in Theorems 1 and 2 be

eliminated?

(2) Can the assumption of finite-dimensionality be eliminated from

Theorem 2?
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