PIECEWISE LINEAR FUNCTIONS WITH ALMOST ALL POINTS EVENTUALLY PERIODIC

MELVYN B. NATHANSON

Abstract

Let $f:[0,1] \rightarrow[0,1]$ be continuous, and let f^{p} denote the p th iterate of f. Li and Yorke [2] proved that if there is a point $x \in[0,1]$ such that $f^{3}(x)=x$ but $f(x) \neq x$, then f is chaotic in the sense that f has periodic points of arbitrarily large period, and uncountably many points which are not even asymptotically periodic. But this chaos can be measure theoretically trivial. For each $p \geqslant 3$ we construct a continuous, piecewise linear function $f:[0,1] \rightarrow[0,1]$ such that f is chaotic, but almost every point of $[0,1]$ has eventual period p. The condition "eventual period p " cannot be replaced by "period p ". We prove that if $f^{p}(x)=x$ for almost all $x \in[0,1]$, then $f^{2}(x)=x$ for all $x \in[0,1]$. Moreover, we describe a normal form for all such "square roots of the identity."

Let $f:[0,1] \rightarrow[0,1]$ be continuous. The iterates of f are defined as follows: $f^{0}(x)=x$ and $f^{n}(x)=f\left(f^{n-1}(x)\right)$ for $n=1,2,3, \ldots$ The point $x \in[0,1]$ is periodic under f with period p if $f^{p}(x)=x$ but $f^{k}(x) \neq x$ for $k=1,2$, $\ldots, p-1$. If $f^{n}(x)$ has period p for some n, then x is eventually periodic under f with period p. Li and Yorke [2] have recently obtained the remarkable result that if $f:[0,1] \rightarrow[0,1]$ has a point of period three, then f is "chaotic" in the sense that, first, there are points $x \in[0,1]$ of arbitrarily large period (in fact, of all periods), and, second, there is an uncountable set $S \subset[0,1]$ such that no point of S is even asymptotically periodic (that is, if $y \in S$ and if x $\in[0,1]$ is periodic, then $\left.\lim \sup \left|f^{n}(y)-f^{n}(x)\right|>0\right)$, and such that, if y_{1}, y_{2} are any two points of S, then $\lim \inf \left|f^{n}\left(y_{1}\right)-f^{n}\left(y_{2}\right)\right|=0$ and $\lim \sup \left|f^{n}\left(y_{1}\right)-f^{n}\left(y_{2}\right)\right|>0$. More generally, Li and Yorke proved that if there is a point $x \in[0,1]$ such that either $f^{3}(x) \leqslant x<f(x)<f^{2}(x)$ or $f^{3}(x)$ $\geqslant x>f(x)>f^{2}(x)$, then f is chaotic. By a combinatorial argument, Nathanson [7] extended this result to show that if f has a point of period five or seven, then f is chaotic. Ulam, May, Oster, and others [1], [3]-[6], [8] have studied in detail the iterations of nonlinear functions f and the dependence of the trajectories $x, f(x), f^{2}(x), f^{3}(x), \ldots$ on the initial value x.

The object of this note is to show that, from the point of view of Lebesgue measure, the results on chaos can be misleading. For every $p \geqslant 3$ we shall construct a continuous, piecewise linear function $f:[0,1] \rightarrow[0,1]$ such that almost every $x \in[0,1]$ has eventual period p. Moreover, f will be chaotic. This

[^0]result is best possible in the sense that the word "eventual" cannot be removed from the statement of the theorem. For if almost every point $x \in[0,1]$ has period p under f, then the continuity of f implies that $f^{p}(x)=x$ for all x, and so $f^{p}=$ identity. However, we shall prove that if $f^{p}=$ identity, then $f^{2}=$ identity. Moreover, we shall describe a normal form for all such square roots of the identity.

Theorem 1. Let $p \geqslant 3$ and let $\delta \in\left(0,2^{-p}\right)$. Define $f:[0,1] \rightarrow[0,1]$ in the following way:

$$
f(x)= \begin{cases}x+1 / p, & 0 \leqslant x \leqslant(p-1) / p \\ 1-(1-\delta) \delta^{-1}(x-(p-1) / p), & (p-1) / p<x<(p-1) / p+\delta \\ x-(p-1) / p, & (p-1) / p+\delta \leqslant x \leqslant 1\end{cases}
$$

Then f is continuous, piecewise linear, chaotic, and almost every point $x \in[0,1]$ has eventual period p under f.

Proof. Clearly, f is continuous and piecewise linear. By the theorem of Li and Yorke, f is also chaotic, since

$$
f^{3}\left(\frac{p-2}{p}\right)=\frac{1}{p} \leqslant \frac{p-2}{p}<f\left(\frac{p-2}{p}\right)=\frac{p-1}{p}<f^{2}\left(\frac{p-2}{p}\right)=1 .
$$

Let $C=\cup_{i=1}^{p}[(i-1) / p+\delta, i / p]$. For $i=1,2, \ldots, p-1$, the function f maps the interval $[(i-1) / p+\delta, i / p]$ linearly onto $[i / p+\delta,(i+1) / p]$ by the rule $f(x)=x+1 / p$. Also, f maps the interval $[(p-1) / p+\delta, 1]$ linearly onto the interval $[\delta, 1 / p]$ by the rule $f(x)=x-(p-1) / p$. Thus, each point $x \in C$ has period p, and $f(C)=C$. Let $x \in[0,1]$. If $f^{m}(x) \in C$ for some m, then $f^{n}(x) \in C$ for all $n \geqslant m$, and x has t ventual period p. We define

$$
\begin{aligned}
& C^{*}=\left\{x \in[0,1] \mid f^{m}(x) \in C \text { for some } m\right\} \\
& U^{*}=\left\{x \in[0,1] \mid f^{n}(x) \notin C \text { for } n=0,1,2,3, \ldots\right\}
\end{aligned}
$$

The sets C^{*} and U^{*} partition $[0,1]$. Every point of C^{*} has eventual period p. If $x \in[0,1]$ does not have eventual period p, then $u \in U^{*}$. Clearly, U^{*} $\subset \cup_{i=0}^{p-1}(i / p, i / p+\delta) \cup\{0\}$. Let $\mu(X)$ denote the Lebesgue measure of X. We shall prove that $\mu\left(C^{*}\right)=1$, or, equivalently, that $\mu\left(U^{*}\right)=0$.

We begin by studying the open interval $U_{0}=((p-1) / p,(p-1) / p+\delta)$. Let $U_{n}=\left\{x \in U_{0} \mid f^{n}(x) \notin C\right\}$. Clearly, $U_{0} \supset U_{1} \supset U_{2} \supset U_{3} \supset \cdots$.

Let $\lambda=\delta /(1-\delta)$. We shall prove, by induction on n, that each U_{n} is a union of disjoint open intervals whose lengths are of the form $\delta \lambda^{k}$ for $k=0$, $1,2, \ldots, n$, and that f^{n} maps each of these intervals linearly onto one of the $p-1$ intervals $(i / p, i / p+\delta)$ for $i=1,2, \ldots, p-1$. Moreover, if $A_{k, n}^{(i)}$ denotes the number of open intervals of length $\delta \lambda^{i}$ of U_{n} which f^{n} maps onto $(i / p, i / p+\delta)$, then the integers $A_{k, n}^{(i)}$ can be computed by the following rules:

$$
\begin{aligned}
& A_{0,0}^{(i)}= \begin{cases}1 & \text { if } i=p-1, \\
0 & \text { if } i=1,2, \ldots, p-2 ;\end{cases} \\
& A_{k, n}^{(i)}=\sum_{j=1}^{i} A_{k-1, n-j}^{(p-1)} \text { for } n=1,2, \ldots,
\end{aligned}
$$

where $A_{k, n}^{(i)}=0$ if $k<0$ or $n<0$.
These statements are obviously true for $n=0$. Let us assume that they hold for some $n-1 \geqslant 0$. We want to describe the structure of U_{n}. Since U_{n} $\subset U_{n-1}$, it is enough to understand how f^{n} acts on the intervals that make up U_{n-1}. Let I be an open interval of U_{n-1} of length $\delta \lambda^{k}$, where $k \leqslant n-1$. If f^{n-1} maps I linearly onto $(i / p, i / p+\delta)$ for some $i=1,2, \ldots, p-2$, then f^{n} maps I linearly onto $((i+1) / p,(i+1) / p+\delta)$. If f^{n-1} maps I linearly onto $((p-1) / p,(p-1) / p+\delta)$, then f^{n} maps I linearly onto ($\left.\delta, 1\right)$. Since the length of I is $\delta \lambda^{k}$, it follows that the slope of f^{n} on I has absolute value $(1-\delta) / \delta \lambda^{k}=1 / \lambda^{k+1}$. Moreover, for each $i=1,2, \ldots, p-1$ there is exactly one open interval of length $\delta \lambda^{k+1}$ of I which f^{n} maps linearly onto $(i / p, i / p+\delta)$. The function f^{n} sends the complement of these $p-1$ intervals into C. It follows that $A_{k, n}^{(1)}=A_{k-1, n-1}^{(p-1)}$ and $A_{k, n}^{(i)}=A_{k, n-1}^{(i-1)}+A_{k-1, n-1}^{(p-1)}$ for i $=2,3, \ldots, p-1$. These relations imply that $A_{k, n}^{(i)}=\sum_{j=1}^{i} A_{k-1, n-j}^{(p-1)}$. This completes the induction.

Now we can compute the measure of the sets U_{n}. It follows from the definition of the numbers $A_{k, n}^{(i)}$ that

$$
\mu\left(U_{n}\right)=\sum_{i=1}^{p-1} \sum_{k=0}^{n} A_{k, n}^{(i)} \delta \lambda^{k}=\delta \sum_{i=1}^{p-1} P_{n}^{(i)}(\lambda),
$$

where $P_{n}^{(i)}(x)$ is the polynomial defined by

$$
P_{n}^{(i)}(x)=\sum_{k=0}^{n} A_{k, n}^{(i)} x^{k}
$$

The recurrence relations for the coefficients $A_{k, n}^{(i)}$ imply that

$$
\begin{aligned}
& P_{0}^{(i)}(x)= \begin{cases}1 & \text { if } i=p-1, \\
0 & \text { if } i=1,2, \ldots, p-2,\end{cases} \\
& P_{n}^{(i)}(x)=x \sum_{j=1}^{i} P_{n-j}^{(p-1)}(x) \text { for } n=1,2, \ldots,
\end{aligned}
$$

where $P_{n}^{(i)}(x)=0$ for $n<0$.
Clearly, the degree of $P_{n}^{(i)}(x)$ is n. Write n in the form $n=q(p-1)-r$, where $r=0,1,2, \ldots, p-2$. I claim that $P_{n}^{(p-1)}(x)$ is divisible by x^{q}. This is certainly true for $q=0$ and $q=1$, since $P_{n}^{(p-1)}(x)$ is divisible by x for $n=1,2, \ldots, p-1$. Moreover, the recurrence relation implies that if x^{k} divides $P_{m}^{(p-1)}(x)$, then x^{k} divides $P_{n}^{(p-1)}(x)$ for all $n \geqslant m$. Let us assume the claim is true for some $q-1 \geqslant 1$ and $r=0,1, \ldots, p-2$. If $n=q(p-1)$ $-r$, then $n-(p-1)=(q-1)(p-1)-r$, and so $P_{n-(p-1)}^{(p-1)}(x)$ is divisible by
x^{q-1}. Consequently, $P_{n-j}^{(p-1)}(x)$ is divisible by x^{q-1} for $j=1,2, \ldots, p-1$. Since $P_{n}^{(p-1)}(x)=x \sum_{j=1}^{p-1} P_{n-j}^{(p-1)}(x)$, it follows that $P_{n}^{(p-1)}(x)$ is divisible by $x \cdot x^{q-1}=x^{q}$. The claim follows by induction on q.

Since the coefficients of $P_{n}^{(p-1)}(x)$ are nonnegative, it follows that for $0<\lambda<1$ we have

$$
P_{n}^{(i)}(\lambda) \leqslant P_{n}^{(p-1)}(\lambda) \leqslant \lambda^{(n+r) /(p-1)} P_{n}^{(p-1)}(1) \leqslant \lambda^{n /(p-1)} P_{n}^{(p-1)}(1)
$$

where $i=1,2,3, \ldots, p-1$ and $n=q(p-1)-r$. But the integers $P_{n}^{(p-1)}(1)$ satisfy the recurrence relations

$$
P_{0}^{(p-1)}(1)=1, \quad P_{n}^{(p-1)}(1)=\sum_{j=1}^{p-1} P_{n-j}^{(p-1)}(1) \quad \text { for } n=1,2, \ldots,
$$

where $P_{n}^{(p-1)}(1)=0$ for $n<0$. An easy induction shows that $P_{n}^{(p-1)}(1)$ $\leqslant 2^{n}$ for $n=0,1,2, \ldots$. Therefore,

$$
P_{n}^{(i)}(\lambda) \leqslant\left(2 \lambda^{1 /(p-1)}\right)^{n}
$$

But for $0<\delta<2^{-p}$ we have

$$
0<\lambda^{1 /(p-1)}=\left(\frac{\delta}{1-\delta}\right)^{1 /(p-1)}<(2 \delta)^{1 /(p-1)}<\frac{1}{2}
$$

and so $0<2 \lambda^{1 /(p-1)}<1$. Therefore,

$$
\mu\left(U_{n}\right)=\delta \sum_{i=1}^{p-1} P_{n}^{(i)}(\lambda) \leqslant \delta(p-1)\left(2 \lambda^{1 /(p-1)}\right)^{n}
$$

Consequently,

$$
\lim _{n \rightarrow \infty} \mu\left(U_{n}\right)=0
$$

Let us return to the set $U^{*}=\left\{x \in[0,1] \mid f^{n}(x) \notin C\right.$ for $\left.n=0,1,2, \ldots\right\}$. Let $U_{n}^{*}=\left\{x \in[0,1] \mid f^{n}(x) \notin C\right\}$. Then

$$
U_{0}^{*}=\bigcup_{i=0}^{p-1}\left(\frac{i}{p}, \frac{i}{p}+\delta\right) \cup\{0\} \supset U_{1}^{*} \supset U_{2}^{*} \supset \cdots
$$

and $U^{*}=\cap_{n=0}^{\infty} U_{n}^{*}$. Therefore, $\mu\left(U^{*}\right)=\lim _{n \rightarrow \infty} \mu\left(U_{n}^{*}\right)$, Since $f(0)=1 / p$ $\in C$, we have $0 \notin U_{n}^{*}$ for $n \geqslant 1$. For $i=0,1, \ldots, p-1$, let $U_{n}^{(i)}=\{x$ $\left.\in(i / p, i / p+\delta) \mid f^{n}(x) \notin C\right\}$. Then $U_{n}^{(p-1)}=U_{n}$ and $U_{n}^{*}=\cup_{i=0}^{p-1} U_{n}^{(i)}$.

For $i=0,1,2, \ldots, p-2$, the $\operatorname{map} f^{p-1-i}$ sends $U_{0}^{(i)^{n}}=(i / p, i / p+\delta)$ linearly onto $((p-1) / p,(p-1) / p+\delta)=U_{0}^{(p-1)}=U_{0}$ according to the rule $f^{p-1-i}(x)=x+(p-1-i) / p$. Therefore,

$$
U_{n}^{(i)}=\left\{x-(p-1-i) / p \mid x \in U_{n-p+1+i}\right\}
$$

for $n \geqslant p-1-i$, and so $\mu\left(U_{n}^{(i)}\right)=\mu\left(U_{n-p+1+i}\right)$. Since $U_{n}^{*}=\bigcup_{i=0}^{p-1} U_{n}^{(i)}$, we have

$$
\mu\left(U_{n}^{*}\right)=\sum_{i=0}^{p-1} \mu\left(U_{n}^{(i)}\right)=\sum_{i=0}^{p-1} \mu\left(U_{n-p+1+i}\right)
$$

and so

$$
\mu\left(U^{*}\right)=\lim _{n \rightarrow \infty} \mu\left(U_{n}^{*}\right)=0
$$

This completes the proof of the theorem.
Theorem 2. If $f:[0,1] \rightarrow[0,1]$ is a continuous function such that $f^{p}(x)=x$ for all x, then $f^{2}(x)=x$ for all x. In particular, if p is odd, then $f(x)=x$ for all x.

Proof. If $f^{p}(x)=x$ for all x, then f is a continuous bijection of $[0,1]$, and so f is monotone and either $f(0)=0, f(1)=1$ or $f(0)=1, f(1)=0$.

Let f be a monotone function such that $f(0)=0, f(1)=1$. If $f(x) \neq x$ for some $x \in(0,1)$, say, $f(x)>x$, then there is an interval $[a, b]$ with $0 \leqslant a<x$ $<b \leqslant 1$ such that $a<x<f(x)<b$ for all $x \in(a, b)$. Then

$$
0 \leqslant a<x<f(x)<f^{2}(x)<\cdots<f^{p-1}(x)<f^{p}(x)<\cdots<b \leqslant 1
$$

and so $f^{p}(x) \neq x$. Therefore, if $f^{p}(x)=x$ for all x, and $f(0)=0, f(1)=1$, then $f(x)=x$ for all x.

Let f be a monotone function such that $f(0)=1, f(1)=0$. If p is odd, then $f^{p}(0)=1$. Therefore, if $f^{p}(x)=x$ for all x, then $p=2 q$ is even. Let $g(x)=f^{2}(x)$. Then g is a monotone function such that $g(0)=0, g(1)=1$, and $g^{q}(x)=f^{p}(x)=x$. Therefore, $g(x)=f^{2}(x)=x$ for all $x \in[0,1]$. This proves the theorem.

The next result shows that all square roots of the identity are obtained by conjugating the function $h(x)=1-x$ by an increasing, "half-linear" function γ. This observation is due to David Kazhdan.

Theorem 3. Let $f:[0,1] \rightarrow[0,1]$ be a continuous function such that $f(0)=1$, $f(1)=0$, and $f^{2}(x)=x$ for all $x \in[0,1]$. Then there is a unique increasing function $\gamma:[0,1] \rightarrow[0,1]$ with γ linear on $\left[0, \frac{1}{2}\right]$ such that

$$
\begin{equation*}
f(x)=\gamma\left(1-\gamma^{-1}(x)\right) \tag{1}
\end{equation*}
$$

for all $x \in[0,1]$.
Proof. Clearly, f is a monotone decreasing function on $[0,1]$. Let $a \in(0,1)$ be a fixed point of f. If $x<a$, then $f(x)>f(a)=a>x$. If $x>a$, then $f(x)$ $<f(a)=a<x$. Therefore, a is the unique fixed point of f.

We define the function γ on $[0,1]$ in the following way:

$$
\gamma(x)= \begin{cases}2 a x, & 0 \leqslant x \leqslant \frac{1}{2}, \\ f(2 a(1-x)), & \frac{1}{2} \leqslant x \leqslant 1 .\end{cases}
$$

Observe that $f(2 a(1-x))$ increases monotonically from a to 1 as x increases from $\frac{1}{2}$ to 1 . Therefore, γ has a continuous inverse on $[0,1]$, and $\gamma^{-1}(x)$ $=x / 2 a$ for $x \in[0, a]$.

Suppose $0 \leqslant x \leqslant a$. Then $1-\gamma^{-1}(x)=1-x / 2 a \in\left[\frac{1}{2}, 1\right]$, and so

$$
\gamma\left(1-\gamma^{-1}(x)\right)=\gamma(1-x / 2 a)=f(2 a(1-(1-x / 2 a)))=f(x)
$$

Suppose $a \leqslant x \leqslant 1$. Then

$$
\gamma^{-1}(x)=y \in\left[\frac{1}{2}, 1\right] \quad \text { and } \quad x=\gamma(y)=f(2 a(1-y))
$$

Therefore, $f(x)=f^{2}(2 a(1-y))=2 a(1-y)$. On the other hand, $1-y$ $\in\left[0, \frac{1}{2}\right]$ and so

$$
\gamma\left(1-\gamma^{-1}(x)\right)=\gamma(1-y)=2 a(1-y)=f(x)
$$

This proves that $f(x)=\gamma\left(1-\gamma^{-1}(x)\right)$ for all $x \in[0,1]$.
Let $\delta:[0,1] \rightarrow[0,1]$ be linear on $\left[0, \frac{1}{2}\right]$ and satisfy $f(0)=0$ and

$$
\begin{equation*}
f(x)=\delta\left(1-\delta^{-1}(x)\right) \tag{2}
\end{equation*}
$$

for all $x \in[0,1]$. Let $\delta\left(\frac{1}{2}\right)=b$. Then

$$
f(b)=\delta\left(1-\delta^{-1}(b)\right)=\delta\left(\frac{1}{2}\right)=b
$$

and so b is a fixed point of f. But f has the unique fixed point a. Therefore, $a=b$ and $\delta(x)=2 a x=\gamma(x)$ for $x \in\left[0, \frac{1}{2}\right]$.

If we replace x by $\gamma(x)$ in (1) and (2), we obtain

$$
\gamma(1-x)=\delta\left(1-\delta^{-1} \gamma(x)\right)
$$

for all $x \in[0,1]$. Suppose $\frac{1}{2} \leqslant x \leqslant 1$. Then $\gamma(x) \in[a, 1]$ and $\delta^{-1} \gamma(x) \in\left[\frac{1}{2}\right.$, 1]. Therefore,

$$
2 a(1-x)=\gamma(1-x)=\delta\left(1-\delta^{-1} \gamma(x)\right)=2 a\left(1-\delta^{-1} \gamma(x)\right)
$$

and so $x=\delta^{-1} \gamma(x)$ and $\gamma(x)=\delta(x)$ for $x \in\left[\frac{1}{2}, 1\right]$. This proves the theorem.

References

1. J. Guckenheimer, G. F. Oster and A. Ipaktchi, The dynamics of density dependent population models (preprint).
2. T.-Y. Li and J. A. Yorke, Period three implies chaos, Amer. Math. Monthly 82 (1975), 985-992.
3. R. M. May, Biological populations with nonoverlapping generations: stable points, stable cycles, and chaos, Science 186 (1974), 645-647.
4. R. M. May and G. F. Oster, Bifurcations and dynamic complexity in simple ecological models, Amer. Natur. 110 (1976), 573-599.
5. N. Metropolis, M. L. Stein and P. R. Stein, Stable states of a non-linear transformation, Numer. Math. 10 (1967), 1-19. MR 37 \# 7068.
6. On finite limit sets for transformations on the unit interval, J. Combinatorial Theory Ser. A 15 (1973), 25-44. MR 47 \#5183.
7. M. B. Nathanson, Permutations, periodicity, and chaos, J. Combinatorial Theory Ser. A 21 (1976) (to appear).
8. P. R. Stein and S. M. Ulam, Non-linear transformation studies on electronic computers, Rozprawy Mat. 39 (1964), 1-66. MR 29 \# 6666.

Department of Mathematics, Brooklyn College, CUNY, Brooklyn, New York 11210
Current address: Department of Mathematics, Southern Illinois University, Carbondale, Illinois 62901

[^0]: Received by the editors January 19, 1976.
 AMS (MOS) subject classifications (1970). Primary 26A18; Secondary 39A20.
 Key words and phrases. Iterations, nonlinear functions, chaotic functions, dynamical systems.

