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PIECEWISE LINEAR FUNCTIONS WITH

ALMOST ALL POINTS EVENTUALLY PERIODIC

MELVYN b. nathanson

Abstract. Let /: [0,1] -» [0,1] be continuous, and let /' denote the />th

iterate of/. Li and Yorke [2] proved that if there is a point x E [0,1] such

that/3(x) = x but/(jc) # x, then/is chaotic in the sense that/has periodic

points of arbitrarily large period, and uncountably many points which are

not even asymptotically periodic. But this chaos can be measure theoretically

trivial. For each p > 3 we construct a continuous, piecewise linear function

/: [0,1] -» [0,1] such that / is chaotic, but almost every point of [0,1] has

eventual period p. The condition "eventual period p" cannot be replaced by

"period p". We prove that if f(x) = x for almost all x e [0,1], then

f (x) = x for all x G [0,1). Moreover, we describe a normal form for all

such "square roots of the identity."

Let/: [0,1] —> [0,1] be continuous. The iterates of /are defined as follows:

f°(x) = x andf(x) = /(/""' (x)) for n = 1, 2, 3.The point x E [0,1]

is periodic under / with period p if fp(x) = x but/ (x) =£ x for k = 1, 2,

..., p - 1. If f"(x) has period p for some n, then x is eventually periodic

under/with period/?. Li and Yorke [2] have recently obtained the remarkable

result that if/: [0,1] —» [0,1] has a point of period three, then/is "chaotic" in

the sense that, first, there are points x G [0,1] of arbitrarily large period (in

fact, of all periods), and, second, there is an uncountable set S C [0,1] such

that no point of S is even asymptotically periodic (that is, if y E S and if x

E [0,1] is periodic, then lim sup|/"(>>) - f"(x)\ > 0), and such that, if yx,y2

are any two points of 5", then lim inf \f(yx) -f(y2)\ =0 and

lim sup|/"(_V|) - f(y2)\ > 0. More generally, Li and Yorke proved that if

there is a point x E [0,1] such that either/3(x) < x < f(x) < f2(x) or f3(x)

> x > f(x) > / (x), then/is chaotic. By a combinatorial argument, Nathan-

son [7] extended this result to show that if/has a point of period five or seven,

then/is chaotic. Ulam, May, Oster, and others [1], [3]-[6], [8] have studied in

detail the iterations of nonlinear functions / and the dependence of the

trajectories x, f(x), f (x), f (x), ... on the initial value x.

The object of this note is to show that, from the point of view of Lebesgue

measure, the results on chaos can be misleading. For every p > 3 we shall

construct a continuous, piecewise linear function /: [0,1] -> [0,1] such that

almost every x E [0, 1] has eventual period p. Moreover,/will be chaotic. This
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result is best possible in the sense that the word "eventual" cannot be removed

from the statement of the theorem. For if almost every point x E [0,1] has

period/» under/ then the continuity of/implies thatfp(x) = x for all x, and

so f = identity. However, we shall prove that if f = identity, then f2 =

identity. Moreover, we shall describe a normal form for all such square roots

of the identity.

Theorem 1. Let p > 3 and let 8 E (0,2~p). Define f: [0,1] -* [0, 1] in ¡he

following way:

Ix+I/P, 0 < x < ip - \)/p,
1 - (1 - 8)8~\x -ip- \)/p),   (p - \)/p <x<(p- x)/p + 8,

x-(p- \)/p, (p - \)/p + 8 < x < 1.

Then f is continuous, piecewise linear, chaotic, and almost every point x E [0,1 ]

has eventual period p under f.

Proof. Clearly, / is continuous and piecewise linear. By the theorem of Li

and Yorke, / is also chaotic, since

Let C = U/LJO - 0/p + 8,i/p]. For / = 1, 2, ...,/»- 1, the function /

maps the interval [(/' - \)/p + 8,i/p] linearly onto [i/p + <5,(/ + \)/p] by the

ru\ef(x) = x + \/p. Also,/maps the interval [(/» - \)/p + 8,1] linearly onto

the interval [8, \/p] by the rule/(x) = x — (p — \)/p. Thus, each point x E C

has period p, and/(C) = C. Let x E [0,1]. If fm(x) E C for some m, then

f"(x) E C for all n > m, and x has tventual period p. We define

C* = {x E [0, l]|/m(.x) G C for some m),

U* ={x E [0, 1]|/"(jc) E dorn = 0,1,2,3,...}.

The sets C* and U* partition [0,1]. Every point of C* has eventual period /».

If x E [0,1] does not have eventual period p, then u E U*. Clearly, t/*

C U,Co O'/p» i/p + 8) U {0}. Let ju.(A') denote the Lebesgue measure of X. We

shall prove that /x(C*) = 1, or, equivalently, that u(i/*) = 0.

We begin by studying the open interval U0 = Up — 1)//», (/» — \)/p + 8).

Let Un = [x E U0\f"ix) EC).   Clearly, U0 D Ux D U2 D U3 D • • •.

Let X = S/(l - 8). We shall prove, by induction on n, that each Un is a

union of disjoint open intervals whose lengths are of the form 8X for k = 0,

1,2,...,«, and that/" maps each of these intervals linearly onto one of the

p - 1 intervals ii/p,i/p + 8) for i = 1, 2, ..., p - 1. Moreover, if Ayn de-

notes the number of open intervals of length 8X of Un which /" maps onto

ii/p,i/p + 8), then the integers A\\ can be computed by the following rules:
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(/)=n    if/-,-i,
°-°      \0       if i = 1,2, ...,;>-2;

Ai)  —   V   yd^-1)        for « =  1  2Akn — 2, i4¿_lin_y-   ror « - i,z,...,
7-1

where A{k\ = 0 if k < 0 or n < 0.

These Statements are obviously true for n — 0. Let us assume that they hold

for some n - 1 > 0. We want to describe the structure of Un. Since Un

C i/n_,, it is enough to understand how/" acts on the intervals that make up

Un_x. Let / be an open interval of Un_x of length SX , where k < n - 1. If

/"_l maps / linearly onto (i/p, i/p + 8) for some i — 1, 2, ..., p — 2, then /"

maps / linearly onto ((/ + l)/p,(i + l)/p + 8). If/"-1 maps / linearly onto

((p - l)/p,(p - l)/p + 8), then /" maps / linearly onto (8, 1). Since the

length of / is ÔÀ*, it follows that the slope of /" on / has absolute value

(1 - 8)/8Xk = l/Xk+l. Moreover, for each / = 1,2, ...,p - 1 there is exactly

one open interval of length ôÀ + of / which /" maps linearly onto

(i/p,i/p + 8). The function/" sends the complement of these p — 1 intervals

into C. It follows that 4'j, = Ak"-\l-\ and Aïi = At*-\ + Atíl-\ for '
= 2, 3, ...,p- 1. These relations imply that A[nn = 2J=1 a[C,%.j. This

completes the induction.

Now we can compute the measure of the sets Un. It follows from the

definition of the numbers Ayn that

ÂUn)= 2   2 4lsxk = 8 2 Pn{i)(X),
1=1 k=0 1=1

where P„    (x) is the polynomial defined by

P„{i\x)=   Î 4lxk.
k=0

The recurrence relations for the coefficients Ayn imply that

^0       if i = 1,2, ...,p - 2;

«(0W - x .2 JSfr°W    for« = 1,2,...,

where Pn{i)(x) = 0 for n < 0.

Clearly, the degree of /^ (*) is n. Write « in the form n = q(p — 1) - r,

where r = 0, 1, 2, ..., p - 2. I claim that /^"''(jc) is divisible by xq. This is

certainly true for q = 0 and a = 1, since P„ ~ (x) is divisible by x for

n = 1, 2, ...,/>- 1. Moreover, the recurrence relation implies that if x

divides /^"''(.x), then x* divides P/fp~ \x) for all « > w. Let us assume the

claim is true for some q — 1 > 1 and r = 0, 1, ..., p — 2. If « = a(/> — 1)

- r, then n - (p - I) = (q - l)(p - 1) - r, and so /^".^(x) is divisible by
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xq~]. Consequently, Pn(I~x)(x) is divisible by xq~l for/ = 1, 2, ...,/>- 1.

Since PH(p~x)ix) = x'Zf'l Pn{I~x)ix), it follows that P„(p~x\x) is divisible by

x ■ xq~   = x9. The claim follows by induction on q.

Since the coefficients of Pfp~ \x) are nonnegative, it follows that for

0 < À < 1 we have

Pn{i)iX) < Pn{p'l)iX) < x(B+')/(^')^(/»-l)(1) < x»/(^D^(/»-l)(1)

where    /= 1, 2, 3, ...,/»- 1 and n = ¿7(7» - 1) — r.    But    the    integers

pÁp-i)^ satisfy the recurrence relations

Po^-^l) = 1,       Pn{p-y\\) = "i P}ffx)(\)   for n - 1, 2,...,

where  P^-1^) = 0 for n < 0.  An  easy  induction  shows  that  Pr}p~{)(\)

< 2" for »ï = 0, 1, 2, .... Therefore,

P„(,)(A) < (2Xl/{p-l))n.

But for 0 < 8 < 2"^ we have

o<^^=(Ti_y/(/,-i)<(28)»/(,-.)<i

and so 0 < 2A1/<P_1) < 1. Therefore,

ÁUH) = 82 Pn{i)(X) < Sip - l)(2K/{p-l))n
1= 1

Consequently,

lim ix(Un) = 0.
n-»oo

Let us return to the set U* = {x E [0, l]\f"(x) $ C for n = 0,1,2,...}.

Let t/„* = {* G [0, l]|/"(x) E C}. Then

and U* = n^=0U*. Therefore, ^U*) = hmn^xii(Un*), Since/(0) = 1//»

G C, we have 0 G £/„* for n > 1.     For    / = 0, 1.p - 1, let l/(,) = {x

G (i/p.i/p + 8)\f"(x) E C). Then V^x) = i/„ and £/* = U,C0' Í-T-
For / = 0, 1, 2, ...,/»- 2, the map/''-1'' sends t/0('' = (///>,//> + fi) line-

arly onto (ip - \)/p,(p - \)/p + 8) = UqP~ = U0 according to the rule

fP-]-¡(x) = x + ip - 1 - i)/p. Therefore,

uP = {x-ip-\-i)/p\xE Un_p+x+i)
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for n > p - 1 - i, and so p(U^) = p(Un_p+x+i). Since U* = U,C0' U¡f\ we

have

P(un*) = 21 M0) = 21 p{un_p+x+i)
i'=0 i=0

and so

p(U*) =  lim M(íC) = 0.
fl—»00

This completes the proof of the theorem.

Theorem 2. ///: [0,1] -» [0,1] is a continuous function such that f(x) = x

/ör a// x, i/ie« / (x) = x /o/- a// x. In particular, if p is odd, then f(x) = x /or a//

x.

Proof. If/^x) = x for all x, then/is a continuous bijection of [0,1], and

so/is monotone and either/(0) = 0,/(l) = 1 or/(0) = 1,/(1) = 0.

Let/be a monotone function such that/(0) = 0,/(l) = 1. If/(x) y= x for

some x G (0,1), say,/(x) > x, then there is an interval [a, b] with 0 < a < x

< b < 1 such that a < x < /(x) < b for all x G (a, b). Then

0 < a < x < f{x) < f\x) <■■■< fp-\x) < fix) < ■ ■ ■ < b < 1

and sofp(x) # x. Therefore, iffp(x) = x for all x, and/(0) = 0,/(l) = 1,

then f(x) = x for all x.

Let/be a monotone function such that/(0) = L/0) = 0. If p is odd, then

fp(0) = 1. Therefore, if fp(x) = x for all x, then p = 2q is even. Let

g(x) = / (•*)• Then g is a monotone function such that g(0) = 0, g(l) = 1,

and g9(x) = fp(x) = x. Therefore, g(x) = f2(x) = x for all x G [0,1]. This

proves the theorem.

The next result shows that all square roots of the identity are obtained by

conjugating the function h(x) = 1 - x by an increasing, "half-linear" func-

tion y. This observation is due to David Kazhdan.

Theorem 3. Let f: [0,1] -> [0,1] be a continuous function such that /(0) = 1,

/(l) = 0, and f (x) = x for all x E [0,1]. Then there is a unique increasing

function y: [0,1] —> [0,1] with y linear on [0, j] suc/i //¡a/

(0 /(x) = y(1-y-'(x))

for all x E [0,1].

Proof. Clearly,/is a monotone decreasing function on [0,1]. Let a G (0,1)

be a fixed point of/. If x < a, then /(x) > /(a) = a > x. If x > a, then /(x)

< /(a) = a < x. Therefore, a is the unique fixed point of/.

We define the function y on [0, 1] in the following way:

f2ax, 0 < x < i,

y{X) "" i/(2a(l - x)\       \ < x < 1.
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Observe that/(2a(l - x)) increases monotonically from a to 1 as x increases

from  f to  1. Therefore, y has a continuous inverse on [0,1], and y~ (x)

= x/2a for x E [0,a].

Suppose 0 < x < a. Then 1 - y~](x) = 1 — x/2a E [\, 1], and so

y(l - y-\x)) = y(l - x/2a) = f(2a(\ - (1 - x/2a))) = fix).

Suppose   a < x < 1.   Then

y-1W=7G^,l]    and   x = y(y) = f(2a(\ - y)).

Therefore, f(x) = f2(2a(\ - y)) = 2a(\ - y).  On  the  other  hand,   1 -y

E [0,j] and so

y(l - y"1«) = y(l -y) = 2a(l - y) = fix).

This proves that/(x) = y(l - y~l(x)) for all x G [0,1].

Let 5: [0,1] -» [0,1] be linear on [0,^] and satisfy/(0) = 0 and

(2) fix) = 8i\-8-\x))

for all x E [0,1]. Let S(£) = b. Then

f(b) = 8(\-8-l(b)) = 8(l) = b

and so b is a fixed point of /. But / has the unique fixed point a. Therefore,

a = b and 8(x) = 2ax = y(x) for x G [0, ¿]-

If we replace x by y(x) in (1) and (2), we obtain

y(l-x) = 8(\-8-]y(x))

for all x E [0,1]. Suppose ^ < x < 1. Then y(x) G [a, I] and fi"'y(x) G [£,

1]. Therefore,

2a(l - x) = y(l - x) = fi(l - ô"'yW) = 2a(l - 8~]y(x))

and so x = 8~ly(x) and y(x) = 8(x) for x G [j, 1]. This proves the theorem.
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