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BAIRE* 1, DARBOUX FUNCTIONS
RICHARD J. O'MALLEY

ABSTRACT. It is well known that a function f: [0, 1] R is Baire 1 if and
only if in any closed set C there is a point x, at which the restricted function
fIC is continuous. Functions will be called Baire* 1 if they satisfy the
following stronger property: For every closed set C there is an open interval
(a, b) with (a, b) N C % @ such that f|C is continuous on (a, b). Functions
which are both Baire* 1 and Darboux are examined. It is known that
approximately derivable functions are Baire* 1. Among other things it is
shown here that L,-smooth functions are Baire* 1. A new result about the

L,-differentiability of L,-smooth, Darboux functions is shown to follow

immediately from the main properties of Baire* 1, Darboux functions.

It is well known that a function f: [0, 1] — R is Baire 1 if and only if in any
closed set C there is a point x, at which the restricted function f|C is
continuous. In this paper functions will be called Baire* 1 if they satisfy the
following stronger property: For every closed set C there is an open interval
(a, b) with (a, b) N C # @ such that f|C is continuous on (a, b). Functions
which are both Baire* 1 and Darboux are the main topic of this paper. It is
known [6] that approximately derivable functions are Baire* 1. Among other
things it is shown here that L -smooth functions are Baire* 1. A new result
about the L,-differentiability of L,-smooth, Darboux functions is shown to
follow immediately from the main properties of Baire* 1, Darboux functions.

The following conventions and notations will be used. All functions will be
real valued and defined on [0, 1]. A component of a set ¥ is a maximal
subinterval of V; it will be denoted as (a, b) even if a or b belongs to V.

If fis a Baire* 1, Darboux function and C is the set of points at which f is
continuous, then the interior of C will be dense. This dense set will be
denoted as U(f) or simply U and its complement as P(f) or simply P.
Finally, the function f restricted to a set Q will be denoted as f|Q.

The first theorem is rather simple but plays an essential role in the later
theorems.

THEOREM. 1. Let f be Baire* 1, Darboux. If U # [0, 1] there is a component
of U on which f is not monotone.

PROOF. Assume instead that f is monotone on each component (a, b) of U.
Then, in addition:
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(1) lim,,_o+ f(a + h) = f(a) and lim,_ 4. f(b — h) = f(b), because of the
Darbouxness of f.

(2) Further, min(f(a), f(b)) < f(x) < max(f(a), f(b)), for all x in (a, b).

Since P # @ it is possible to select an open interval (¢, d) with (c,
d)N P # @ and f|P continuous on (c, d). The continuity of f|P on (¢, d)
combined with (1) and (2) gives that f i1s actually continuous on (c, d),
contradicting (¢, d) N P # @.

Theorem 1 can be thought of as providing a test whereby Baire 1, Darboux
functions can be examined for monotonicity. More precisely, Theorem 1
leads immediately to the following result similar to that of Bruckner [2].

COROLLARY 1. Let T be any function-theoretical property sufficiently strong
that:

(1) Any Baire 1, Darboux function having T is Baire* 1.

(2) Any continuous function having T is monotone.
Then any Baire 1, Darboux function having T is monotone.

In [3] Croft constructed an example of a Baire 1, Darboux function which
is zero almost everywhere but is not identically zero. Theorem 1, however,
shows that if a Baire* 1 function is zero on a dense set then it is identically
zero. Moreover, for Croft’s function f let C be the points at which f is
continuous. It is clear that f(C) = {0} while f([0, 1]) = J, a nondegenerate
interval. Therefore, f(C) is not dense in J. Theorems 2 and 4 below show that
the situation is much better for Baire* 1, Darboux functions.

THEOREM 2. Let f be Baire* 1, Darboux. Then f([0, 1))\ f(U) is nowhere
dense.

Proor. If f is identically a constant there is nothing to prove. It will be
assumed therefore that f([0, 1]) = I is a nondegenerate interval. Let (c, d) be
a subinterval of /. It will be shown that there is an open interval (a, b) in U
whose image J under f is a nondegenerate interval intersecting (¢, d).

Consider the function g(x) = min[d, max(f(x), c¢)]. This new function is
Baire* 1, Darboux. Moreover, f(x) = g(x) if ¢ < f(x) < d. Therefore, g(x) is
not a constant function. Consider U(g). Theorem 1 guarantees that there is
some component (r, s) of U(g) on which g is not constant. Since g(x) is not
constant on (r, s) and ¢ < g(x) < d, there is some point x, with (i) r < x, <
s, (1) ¢ < g(x,) < d, and (iii) g nonconstant in any neighborhood of x,. Now
g is continuous on (r, s), and hence (r, s) has a subinterval (r, s,) containing
xo with ¢ < g(x) < d on (r, 5;). On this subinterval f(x) = g(x). Therefore,
(ry, ) c U(S), J = f((ry, 5})) C (¢, d), and f is not constant on (r,, s,). This
completes the proof.

Theorem 2 implies the following:

COROLLARY 2. Let f be Baire* 1, Darboux. Let I be any interval. If {x:
a< f(x)<bYyN 1+, then {x: a< f(x)<b}nInU=%*@. Thus
Baire* 1, Darboux functions have the Denjoy-Clarkson property.



BAIRE* 1, DARBOUX FUNCTIONS 189

It is clear from Theorem 1 that any Baire* 1, Darboux function f must
attain a local extremum at some point of U. However, it is easy to construct
examples of Baire* 1, Darboux functions which have no absolute extrema
and attain on U only local minima. The following theorem shows that local
maxima must also occur somewhere in [0, 1].

THEOREM 3. Let f be Baire* 1, Darboux. If E = {x: f(x) > 0} is not empty
then there is a point x, in E at which f has a local maximum.

PROOF. It is clear that only the case where U # [0, 1] need be proven. Also,
it is sufficient to prove the theorem for nonnegative functions. (If f is not
nonnegative it could be replaced by g(x) = max(f(x), 0).) Corollary 2 insures
that every open interval / with I N E# @ has I N E N U # @. Let (a, b)
be any component of U with V = (a, b)) N E # Q. If it is assumed that f does
not have a local maximum greater than zero inside (a, b) then V cannot
contain a component of the form (¢, d) with a < ¢ < d < b. Thus the
behavior of f on [a, b] can be described in one of the following ways:

(1) V =(a,c),c < b. Thenf(a) > 0,a # b, f = 0on [c, b}, and fis strictly
decreasing on [a, c].

@)V =(c,b),a < c.Thenf(b) > 0,b# 1,f =0on]|a, c], and f is strictly
increasing on [c, b].

3) V = (a, b), f(a) > 0, f(b) > 0, and f is strictly monotone on [a, b].

) V = (a, b), f(a) > 0, f(b) > 0, and there is a < ¢ < b with f strictly
decreasing on [a, ¢] and strictly increasing on [c, b].

BS)yV=(ac)u(db),a<c<d<hb, f(a)>0,f(b) >0, and f strictly
decreasing on [a, c], f = 0 on [c, d], f strictly increasing on [d, b].

It should be noted that Theorem 1 implies that every open interval / with
I N P #* @ has nonempty intersection with components of U satisfying (4) or
(5). Further, all five cases imply E N P # Q. Let Q be the closure of E N P.
Let (r, s) be an open interval with (r, s) N Q # @ and f|Q continuous on (r,
s). It can be assumed that r and s are elements of components of U satisfying
(4) or (5). Let (a,, b,) be the component of U containing r and (a,, b,) that
containing s. It may be assumed that f is strictly increasing on [r, b,] and
strictly decreasing on [a,, s]. Further, f(a,) > 0 and f(4,) > 0.

Since the set Q N (r, s) is compact and f|Q is continuous on (r, s), there is
an x, in Q with f(xy) > f(x) for all x in Q N (r, 5). Since E N P is dense in
0, f(xg) > 0. It is further claimed that f(x,) > f(x) for all x in (r, 5). To see
this, let x, belong to (r, s) \ Q. Then either x, belongs to U or x, belongs to
P\ E. If x| belongs to U N (r, s) let I be the component of U containing x,.
One of the five cases above describes the behavior of f on I. In any of these
five cases, it is not hard to see that at least one endpoint e of I belongs to
Q N (r, s) and f(e) > f(x,). If x, belongs to P \ E then f(x,) < 0 < f(xo).
Thus f has a local maximum at x,. This completes the proof.

COROLLARY 3. Let f be Baire* 1, Darboux on an open interval containing |0,

1. If
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) f(x + h) + f(x — h) = 2f(x)
lim sup >0
h—>0* h?
for all x in [0, 1], then f is convex.

PRrROOF. Same as [4].

THEOREM 4. Let f: [0, 1] > R be Baire* 1, Darboux. Let C be the set of
points at which f is continuous. Then f([0, 1))\ f(C) is at most countable.

PROOF. Let E be the union of those open intervals I with f(I)\ f(C) at
most countable. Then the set E is open. Moreover, U (f) is a subset of E.
Thus E is nonempty, and if J is a component of E, then f(J)\ f(C) is at
most countable. It is necessary to show that E = [0, 1]. Assume instead that
H = [0, 1]\ E is nonempty. Then H is a closed nowhere dense set. Select an
open interval (¢, d), having endpoints in E, with (¢, d) N H # @ and f|H
continuous on (c, d). The interval (¢, d) is the disjoint union of the sets (c,
d) N H and (¢, d) N E. Consider ¥ = (¢, d) N E. This is an open set. Then
let V= U, cncal@ b,) and f(V)= U, c,cf((a, b,)). For each n,
f((a,, b))\ f(C) is at most countable. Therefore, f(¥)\ f(C) is at most
countable. Let D be the set of points of discontinuity of f, and consider (c,
d) N H. This is the disjoint union of 4, = (c, d)N H N C and 4, = (c,
d) N H N D. Obviously, f(4,)\ f(C) = @. Finally, let x, belong to 4,.
Since f|H is continuous at x, and f is discontinuous at x,, there is a sequence
x,, from E converging to x,, and an ¢ > 0 such that |f(x,) — f (xp)] > e It
may be assumed that f(x,,) > f(x,) + € and x,, > x, for all m. Let a,, be the
left endpoint of the component of E containing x,,. (It may be that a,, = x,.)
Then f(a,,) converges to f(x,). Let 8 > 0 be given. There is an M such that
m > M implies that f(a,) < f(x,) + 8. Since f(x,,) > f(xo) + ¢ and f has
the Darboux property on (a,, X,,), the interval (f(xo) + &, f(xp) + €) is a
subset of f(V) for each § > 0. Therefore, (f(xg), f(xo) + €) C f(V). This
means that either f(x,) is contained in f(¥) or is an endpoint of the interior
of f(V). There are only countably many such endpoints. Hence f(4,) \ f(V)
is at most countable. Since f(c, d) = f(V) U f(4,) U f(4,), the above facts
show that f(c, d) \ f(C) is at most countable. Thus (c, d) C E, contradicting
(c,dyn H+# Q.

In the next section of the paper L,-smooth functions are considered. It will
be pointed out that such functions are Baire* 1. The proof of this fact is a
matter of reinterpretation and rearrangement of results in [5]. Finally, it is
shown that Theorem 3 of this paper can be used to obtain a new result about
the L -differentiability properties of L, -smooth, Darboux functions.

DEFINITION. A measurable function f: [0, 1] — R is L,-smooth, p > 1, if for
each x in (0, 1)

1 rh , 1/p
{;f()lf(x+f)+f(x—t)—2f(x)| dt} = o(h) ash—0.

DEFINITION. A measurable function has at x, a first L,-derivative, L,f'(xo),
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provided there is an a, such that

1 h ) , 1/p
{ 24 f_hlf(xo + 1) — ay — L,f(x)!] dt] = o(h) ash—0.

The following lemma, in slightly different form, can be found in {1, p. 53].
It will be needed in connection with Theorem 5. However, it is of indepen-
dent interest.

LEMMA 1. Let 2 f, (x) = f(x) for all x in [0, 1] with f,(x) continuous for
n=12....Let Za, < +oo,and a, > 0 forn=1,2,....Suppose that for
each x in [0, 1] there is an N (x) such that n > N (x) implies that | f,(x)| < a,.
Then for each closed set C there is an interval (a, b), with (a, b) N C # O, such

that the series of functions converges uniformly on (a, b) N C. Hence f is Baire*
1.

PROOF. See Auerbach [1, p. 53]. In [1] the closed set C is assumed to be an
interval. However, the proof given applies equally well to any closed set.

THEOREM 5. Let f be L,-smooth. Then f is Baire* 1.

PROOF. Suppose first that f is integrable. Then a perusal of the proof of
Lemma 6 [5] and the lemma given above shows that f is Baire* 1.

In the general case, let 4, = {x: ¢ > 0 implies X*e|f(1)|P dt = o0}. Then
A, is clearly closed, and Lemma 11 of [5, p. 89] shows that if f is L,-smooth
then A, is countable. Let [0, 1]\ 4, = B,. It follows readily, as in the proof of
[4, p. 90], that f is Baire* 1 on each component of B,. Since 4, is closed and
countable, it is also immediate that f is Baire* 1 on [0, 1].

It should be noted that if a function f is smooth and measurable, then it is
L,-smooth. Therefore, Theorem 5 also applies to smooth measurable func-

tions.

THEOREM 6. Let f: [0, 1] > R be L,-smooth and Darboux, and let S = {x:
L,f" exists}. Then L,f" has the Darboux property on S.

PrOOF. It need only be shown that if a < b and L,f'(a) <0 < L,f'(b).
then there is a point x, in (a, b) with L,f'(x,) = 0. Consider f on the interval
[a, b]. If f is continuous on [a, b] then the result follows as in Theorem 3 of [5,
p. 85]. If f is not continuous on [a, b], then because it is Darboux it cannot be
monotone. Hence it is possible to select two points a, and b, with a < a, <
b, < b and f(a,) = f(b,). The function f is Baire* 1, Darboux on [a,, b)].
Hence Theorem 3 of this paper implies that there is a point x, in (a,, b)) at
which f has a local maximum or local minimum. Then when 4 is sufficiently
small it follows that

|f(xo + 1) = f(xo)[] <[ f (X0 + 1) + f(xo = 1) = 2f (xq)|" forall |s| < h.
Hence f has an L ,-derivative of 0 at x,. Finally, it should be remarked that if f

is smooth and measurable then S = {x: L,f" exists} can be replaced by {x: f’
exists}.
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