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BAIRE* 1, DARBOUX FUNCTIONS

RICHARD J. O'MALLEY

Abstract. It is well known that a function /: [0, 1] -» R is Baire 1 if and

only if in any closed set C there is a point x0 at which the restricted function

f\C is continuous. Functions will be called Baire* 1 if they satisfy the

following stronger property: For every closed set C there is an open interval

(a, b) with (a, b) n C =£ 0 such that f\C is continuous on (a, b). Functions

which are both Baire* 1 and Darboux are examined. It is known that

approximately derivable functions are Baire* 1. Among other things it is

shown here that Lp-smooth functions are Baire* 1. A new result about the

/_ -differentiability of L^-smooth, Darboux functions is shown to follow

immediately from the main properties of Baire* 1, Darboux functions.

It is well known that a function/: [0, 1] —> R is Baire 1 if and only if in any

closed set C there is a point x0 at which the restricted function f\C is

continuous. In this paper functions will be called Baire* 1 if they satisfy the

following stronger property: For every closed set C there is an open interval

(a, b) with (a, b) n C =h 0 such that/|C is continuous on (a, b). Functions

which are both Baire* 1 and Darboux are the main topic of this paper. It is

known [6] that approximately derivable functions are Baire* 1. Among other

things it is shown here that 7^-smooth functions are Baire* 1. A new result

about the Lp-differentiability of 7^-smooth, Darboux functions is shown to

follow immediately from the main properties of Baire* 1, Darboux functions.

The following conventions and notations will be used. All functions will be

real valued and defined on [0, 1]. A component of a set V is a maximal

subinterval of V; it will be denoted as (a, b) even if a or b belongs to V.

If/is a Baire* 1, Darboux function and C is the set of points at which /is

continuous, then the interior of C will be dense. This dense set will be

denoted as U(f) or simply U and its complement as P(f) or simply P.

Finally, the function / restricted to a set Q will be denoted as f\ Q.

The first theorem is rather simple but plays an essential role in the later

theorems.

Theorem 1. Let f be Baire* 1, Darboux. If U ^ [0, 1] there is a component

of U on which f is not monotone.

Proof. Assume instead that/is monotone on each component (a, b) of U.

Then, in addition:
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(1) limA_>0+ f(a + ai) = f(a) and lim^g- f(b - h) = f(b), because of the

Darbouxness of/.

(2) Further, min(/(a), f(b)) < f(x) < max(/(a), f(b)), for all x in (a, b).

Since P ^ 0 it is possible to select an open interval (c, d) with (c,

d) n P 7e 0 and f\P continuous on (c, d). The continuity of f\P on (c, d)

combined with (1) and (2) gives that / is actually continuous on (c, d),

contradicting (c, d) n P ¥= 0.

Theorem 1 can be thought of as providing a test whereby Baire 1, Darboux

functions can be examined for monotonicity. More precisely, Theorem 1

leads immediately to the following result similar to that of Bruckner [2].

Corollary 1. Let T be any function-theoretical property sufficiently strong

that:

(1) Any Baire 1, Darboux function having T is Baire* 1.

(2) Any continuous function having T is monotone.

Then any Baire 1, Darboux function having T is monotone.

In [3] Croft constructed an example of a Baire 1, Darboux function which

is zero almost everywhere but is not identically zero. Theorem 1, however,

shows that if a Baire* 1 function is zero on a dense set then it is identically

zero. Moreover, for Croft's function / let C be the points at which / is

continuous. It is clear that/(C) = {0} while /([0, 1]) = J, a nondegenerate

interval. Therefore,/(C) is not dense in J. Theorems 2 and 4 below show that

the situation is much better for Baire* 1, Darboux functions.

Theorem 2. Let f be Baire* 1, Darboux. Then /([0, l])\f(U) is nowhere

dense.

Proof. If / is identically a constant there is nothing to prove. It will be

assumed therefore that/([0, 1]) = / is a nondegenerate interval. Let (c, d) be

a subinterval of /. It will be shown that there is an open interval (a, b) in U

whose image J under/is a nondegenerate interval intersecting (c, d).

Consider the function g(x) = min[(7, max(/(jc), c)]. This new function is

Baire* 1, Darboux. Moreover, f(x) = g(x) if c < f(x) < d. Therefore, g(x) is

not a constant function. Consider U(g). Theorem 1 guarantees that there is

some component (r, s) of U(g) on which g is not constant. Since g(x) is not

constant on (r, s) and c < g(x) < d, there is some point x0 with (i) r < x0 <

s, (ii) c < g(x0) < d, and (iii) g nonconstant in any neighborhood of x0. Now

g is continuous on (r, s), and hence (r, s) has a subinterval (/*,, sx) containing

x0 with c < g(xQ) < d on (rx, sx). On this subinterval/(jc) = g(x). Therefore,

(a-,, sx) c £/(/), / = f((rx, sx)) c (c, d), and/is not constant on (rx, sx). This

completes the proof.

Theorem 2 implies the following:

Corollary 2. Let f be Baire* 1, Darboux. Let I be any interval. If {x:

a < f(x) < b} n / =?*= 0, then {x: a < f(x) < b) n / D U ¥= 0. Thus

Baire* 1, Darboux functions have the Denjoy-Clarkson property.
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It is clear from Theorem 1 that any Baire* 1, Darboux function/ must

attain a local extremum at some point of U. However, it is easy to construct

examples of Baire* 1, Darboux functions which have no absolute extrema

and attain on U only local minima. The following theorem shows that local

maxima must also occur somewhere in [0, 1].

Theorem 3. Let f be Baire* 1, Darboux. If E = (x:/(x) > 0} is not empty

then there is a point x0 in E at which f has a local maximum.

Proof. It is clear that only the case where U ¥= [0, 1] need be proven. Also,

it is sufficient to prove the theorem for nonnegative functions. (If / is not

nonnegative it could be replaced by g(x) = max(/(x), 0).) Corollary 2 insures

that every open interval 7 with 7 n E =£ 0 has 7 n F n U =£ 0. Let (a, b)

be any component of U with V = (a, b) n £^0. If it is assumed that/does

not have a local maximum greater than zero inside (a, b) then V cannot

contain a component of the form (c, d) with a < c < d < b. Thus the

behavior of/on [a, b] can be described in one of the following ways:

(1) V = (a, c), c < b. Then/(a) > 0, a j- b,f = 0 on [c, b], and/is strictly

decreasing on [a, c].

(2) V = (c, b), a < c. Then fib) > 0, b i= \,f = 0 on [a, c], and/is strictly

increasing on [c, b).

(3) V = ia, b), fia) > 0, fib) > 0, and / is strictly monotone on [a, b].

(4) v = (a, b), f(a) > 0, f(b) > 0, and there is a < c < b with / strictly

decreasing on [a, c] and strictly increasing on [c, b).

(5) V = (a, c) u (d, b), a < c < d < b, f(a) > 0, f(b) > 0, and / strictly

decreasing on [a, c], f = 0 on [c, d],f strictly increasing on [d, b].

It should be noted that Theorem 1 implies that every open interval 7 with

7 n P # 0 has nonempty intersection with components of U satisfying (4) or

(5). Further, all five cases imply E n P i= 0. Let Q be the closure of E n P-

Let (r, s) be an open interval with (r, s) n Q =£ 0 and f\Q continuous on (r,

s). It can be assumed that r and s are elements of components of U satisfying

(4) or (5). Let (a,, bx) be the component of U containing r and (a2, b2) that

containing j. It may be assumed that / is strictly increasing on [r, bx] and

strictly decreasing on [a2, s]. Further, f(a2) > 0 and/(¿»,) > 0.

Since the set Q n (r, s) is compact and f\Q is continuous on (r, s), there is

an x0 in Q with /(x0) > f(x) for all x in Q n (r, s). Since E n P is dense in

Q, f(x0) > 0. It is further claimed that/(x0) > f(x) for all x in (r, s). To see

this, let x, belong to (r, s) \ Q. Then either x, belongs to U or x, belongs to

P \ E. If x, belongs to U n (r, s) let 7 be the component of U containing xx.

One of the five cases above describes the behavior of / on 7. In any of these

five cases, it is not hard to see that at least one endpoint e of 7 belongs to

Q n (r, s) and f(e) > f(xx). If x, belongs to P \ E then /(x,) < 0 < /(x0).

Thus / has a local maximum at x0. This completes the proof.

Corollary 3. Let f be Baire* 1, Darboux on an open interval containing [0,

11.7/
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f(x + h)+f(x-h)-2f(x)
hm sup- > 0

h->0+ AI2

for ail x in [0, 1], then f is convex.

Proof. Same as [4],

Theorem 4. Let f: [0, 1] -» R be Baire* I, Darboux. Let C be the set of

points at which f is continuous. Then f([0, 1]) \f(C) is at most countable.

Proof. Let E be the union of those open intervals / with /(/)\/(C) at

most countable. Then the set E is open. Moreover, U(f) is a subset of E.

Thus E is nonempty, and if J is a component of E, then /(./) \/(C) is at

most countable. It is necessary to show that E = [0, 1]. Assume instead that

H = [0, 1] \ E is nonempty. Then H is a closed nowhere dense set. Select an

open interval (c, d), having endpoints in E, with (c, d) n H =£ 0 and f\H

continuous on (c, d). The interval (c, d) is the disjoint union of the sets (c,

d) f) H and (c, ci) n £• Consider V = (c, <i) n E. This is an open set. Then

let V= U10<A> *„) and /(K) = U 1<n<00/((a„, />„)). For each ai,

/((a,,, bn))\f(C) is at most countable. Therefore, /(F) \/(C) is at most

countable. Let D be the set of points of discontinuity of /, and consider (c,

d) n H. This is the disjoint union of Ax = (c, d) n H n C and A2 = ic,

d)f) H O D. Obviously, /L4,)\/(C) = 0. Finally, let x0 belong to A2.

Since/| if is continuous at x0 and/is discontinuous at x0, there is a sequence

xm from £ converging to x0, and an e > 0 such that \fixm) — fix0)\ > e. It

may be assumed that/(xm) > f(x0) + e and xm > x0 for all aai. Let am be the

left endpoint of the component of E containing xm. (It may be that am = x0.)

Then fiam) converges to fix0). Let 8 > 0 be given. There is an M such that

m > M implies that fiam) < f(x0) + <5. Since fixm) > f(x0) + e and / has

the Darboux property on (am, xm), the interval (f(x0) + 8, f(x0) + e) is a

subset of f(V) for each 8 > 0. Therefore, (/(x0), /(*„) + e) Cf(V). This

means that either f(x0) is contained in /( V) or is an endpoint of the interior

of/(F). There are only countably many such endpoints. Hence f(A2) \f(V)

is at most countable. Since/(c, d) = f(V) u fiAx) u /L42)> trie above facts

show that/(c, d) \/(C) is at most countable. Thus (c, d) c E, contradicting

(c, d)nH*0.
In the next section of the paper L^-smooth functions are considered. It will

be pointed out that such functions are Baire* 1. The proof of this fact is a

matter of reinterpretation and rearrangement of results in [5]. Finally, it is

shown that Theorem 3 of this paper can be used to obtain a new result about

the Lp-differentiability properties of ¿^-smooth, Darboux functions.

Definition. A measurable function/: [0, 1] —*• /Î is Lp-smooth,/> > 1, if for

each x in (0, 1)

/•* .     1 X/P
\   \f(x + t)+f(x- t)-2f(x)\p dt\     = o(A)    asA-»0.

Definition. A measurable function has at x0 a first ¿^-derivative, LJ'ÍXq),
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provided there is an a0 such that

±.jy(Xo+t)-a0- V'(*o)'f dt\     =o(h)   ash^O.

The following lemma, in slightly different form, can be found in [1, p. 53].

It will be needed in connection with Theorem 5. However, it is of indepen-

dent interest.

Lemma 1. Let 2/„(x) = f(x) for all x in [0, 1] with fn(x) continuous for

n = 1,2,.... Let "2an < + oo, and an > Ofor n = 1, 2, . . . . Suppose that for

each x in [0, 1] there is an N(x) such that n > A'(x) implies that |/„(x)| < an.

Then for each closed set C there is an interval (a, b), with (a, b) n C ^= 0, such

that the series of functions converges uniformly on (a, b) n C. Hence f is Baire*

1.

Proof. See Auerbach [1, p. 53]. In [1] the closed set C is assumed to be an

interval. However, the proof given applies equally well to any closed set.

Theorem 5. Let f be Lp-smooth. Then f is Baire* 1.

Proof. Suppose first that / is integrable. Then a perusal of the proof of

Lemma 6 [5] arid the lemma given above shows that/is Baire* 1.

In the general case, let Ap = {x: e > 0 implies ¡xxt.ec\f(t)\p dt = oo}. Then

Ap is clearly closed, and Lemma 11 of [5, p. 89] shows that if / is ¿^-smooth

then Ap is countable. Let [0, 1] \ Ap - Bp. It follows readily, as in the proof of

[4, p. 90], that/ is Baire* 1 on each component of B . Since Ap is closed and

countable, it is also immediate that/is Baire* 1 on ¡0, 1],

It should be noted that if a function/is smooth and measurable, then it is

L -smooth. Therefore, Theorem 5 also applies to smooth measurable func-

tions.

Theorem 6. Let f: [0, 1] -h> R be Lp-smooth and Darboux, and let S = {x:

LJ' exists). Then LJ' has the Darboux property on S.

Proof. It need only be shown that if a < b and LJ'(d) < 0 < LJXb),

then there is a point x0 in (a, b) with ¿^/'(xq) = 0. Consider / on the interval

[a, b]. If/is continuous on [a, b] then the result follows as in Theorem 3 of [5,

p. 85], If/is not continuous on [a, b], then because it is Darboux it cannot be

monotone. Hence it is possible to select two points ax and bx with a < ax <

bx < b and f(ax) = f(bx). The function / is Baire* 1, Darboux on [ax, bx].

Hence Theorem 3 of this paper implies that there is a point x0 in (ax, bx) at

which / has a local maximum or local minimum. Then when h is sufficiently

small it follows that

|/(x0 + t) - /(x0)f <|/(x0 +t)+ f(x0 -t)- 2/(x0)|"   for all |i| < h.

Hence/has an ¿.^-derivative of 0 at x0. Finally, it should be remarked that if/

is smooth and measurable then S - (x: LJ' exists} can be replaced by (x: /'

exists}.
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