BAIRE* 1, DARBOUX FUNCTIONS

RICHARD J. O'MALLEY

ABSTRACT. It is well known that a function $f\colon [0,\ 1]\to R$ is Baire 1 if and only if in any closed set C there is a point x_0 at which the restricted function f|C is continuous. Functions will be called Baire* 1 if they satisfy the following stronger property: For every closed set C there is an open interval (a,b) with $(a,b)\cap C\neq \emptyset$ such that f|C is continuous on (a,b). Functions which are both Baire* 1 and Darboux are examined. It is known that approximately derivable functions are Baire* 1. Among other things it is shown here that L_p -smooth functions are Baire* 1. A new result about the L_p -differentiability of L_p -smooth, Darboux functions is shown to follow immediately from the main properties of Baire* 1, Darboux functions.

It is well known that a function $f: [0, 1] \to R$ is Baire 1 if and only if in any closed set C there is a point x_0 at which the restricted function f|C is continuous. In this paper functions will be called Baire* 1 if they satisfy the following stronger property: For every closed set C there is an open interval (a, b) with $(a, b) \cap C \neq \emptyset$ such that f|C is continuous on (a, b). Functions which are both Baire* 1 and Darboux are the main topic of this paper. It is known [6] that approximately derivable functions are Baire* 1. A new result about the L_p -differentiability of L_p -smooth, Darboux functions is shown to follow immediately from the main properties of Baire* 1, Darboux functions.

The following conventions and notations will be used. All functions will be real valued and defined on [0, 1]. A component of a set V is a maximal subinterval of V; it will be denoted as (a, b) even if a or b belongs to V.

If f is a Baire* 1, Darboux function and C is the set of points at which f is continuous, then the interior of C will be dense. This dense set will be denoted as U(f) or simply U and its complement as P(f) or simply P. Finally, the function f restricted to a set Q will be denoted as f|Q.

The first theorem is rather simple but plays an essential role in the later theorems.

THEOREM 1. Let f be Baire* 1, Darboux. If $U \neq [0, 1]$ there is a component of U on which f is not monotone.

PROOF. Assume instead that f is monotone on each component (a, b) of U. Then, in addition:

Received by the editors February 20, 1976.

AMS (MOS) subject classifications (1970). Primary 26A21, 26A24; Secondary 26A15, 26A48, 26A51.

Key words and phrases. Darboux, Baire 1, L_p -smooth, L_p -derivative, Denjoy-Clarkson Property.

Copyright © 1977, American Mathematical Society

- (1) $\lim_{h\to 0^+} f(a+h) = f(a)$ and $\lim_{h\to 0^+} f(b-h) = f(b)$, because of the Darbouxness of f.
- (2) Further, $\min(f(a), f(b)) \le f(x) \le \max(f(a), f(b))$, for all x in (a, b). Since $P \ne \emptyset$ it is possible to select an open interval (c, d) with $(c, d) \cap P \ne \emptyset$ and f|P continuous on (c, d). The continuity of f|P on (c, d) combined with (1) and (2) gives that f is actually continuous on (c, d), contradicting $(c, d) \cap P \ne \emptyset$.

Theorem 1 can be thought of as providing a test whereby Baire 1, Darboux functions can be examined for monotonicity. More precisely, Theorem 1 leads immediately to the following result similar to that of Bruckner [2].

COROLLARY 1. Let T be any function-theoretical property sufficiently strong that:

- (1) Any Baire 1, Darboux function having T is Baire* 1.
- (2) Any continuous function having T is monotone. Then any Baire 1, Darboux function having T is monotone.

In [3] Croft constructed an example of a Baire 1, Darboux function which is zero almost everywhere but is not identically zero. Theorem 1, however, shows that if a Baire* 1 function is zero on a dense set then it is identically zero. Moreover, for Croft's function f let C be the points at which f is continuous. It is clear that $f(C) = \{0\}$ while f([0, 1]) = J, a nondegenerate interval. Therefore, f(C) is not dense in J. Theorems 2 and 4 below show that the situation is much better for Baire* 1, Darboux functions.

THEOREM 2. Let f be Baire* 1, Darboux. Then $f([0, 1]) \setminus f(U)$ is nowhere dense.

PROOF. If f is identically a constant there is nothing to prove. It will be assumed therefore that f([0, 1]) = I is a nondegenerate interval. Let (c, d) be a subinterval of I. It will be shown that there is an open interval (a, b) in U whose image J under f is a nondegenerate interval intersecting (c, d).

Consider the function $g(x) = \min[d, \max(f(x), c)]$. This new function is Baire* 1, Darboux. Moreover, f(x) = g(x) if c < f(x) < d. Therefore, g(x) is not a constant function. Consider U(g). Theorem 1 guarantees that there is some component (r, s) of U(g) on which g is not constant. Since g(x) is not constant on (r, s) and $c \le g(x) \le d$, there is some point x_0 with (i) $r < x_0 < s$, (ii) $c < g(x_0) < d$, and (iii) g nonconstant in any neighborhood of x_0 . Now g is continuous on (r, s), and hence (r, s) has a subinterval (r_1, s_1) containing x_0 with $c < g(x_0) < d$ on (r_1, s_1) . On this subinterval f(x) = g(x). Therefore, $(r_1, s_1) \subset U(f)$, $J = f((r_1, s_1)) \subset (c, d)$, and f is not constant on (r_1, s_1) . This completes the proof.

Theorem 2 implies the following:

COROLLARY 2. Let f be Baire* 1, Darboux. Let I be any interval. If $\{x: a < f(x) < b\} \cap I \neq \emptyset$, then $\{x: a < f(x) < b\} \cap I \cap U \neq \emptyset$. Thus Baire* 1, Darboux functions have the Denjoy-Clarkson property.

It is clear from Theorem 1 that any Baire* 1, Darboux function f must attain a local extremum at some point of U. However, it is easy to construct examples of Baire* 1, Darboux functions which have no absolute extrema and attain on U only local minima. The following theorem shows that local maxima must also occur somewhere in [0, 1].

THEOREM 3. Let f be Baire* 1, Darboux. If $E = \{x: f(x) > 0\}$ is not empty then there is a point x_0 in E at which f has a local maximum.

PROOF. It is clear that only the case where $U \neq [0, 1]$ need be proven. Also, it is sufficient to prove the theorem for nonnegative functions. (If f is not nonnegative it could be replaced by $g(x) = \max(f(x), 0)$.) Corollary 2 insures that every open interval I with $I \cap E \neq \emptyset$ has $I \cap E \cap U \neq \emptyset$. Let (a, b) be any component of U with $V = (a, b) \cap E \neq \emptyset$. If it is assumed that f does not have a local maximum greater than zero inside (a, b) then V cannot contain a component of the form (c, d) with a < c < d < b. Thus the behavior of f on [a, b] can be described in one of the following ways:

- (1) V = (a, c), c < b. Then $f(a) > 0, a \neq b, f \equiv 0$ on [c, b], and f is strictly decreasing on [a, c].
- (2) V = (c, b), a < c. Then f(b) > 0, $b \ne 1$, $f \equiv 0$ on [a, c], and f is strictly increasing on [c, b].
 - (3) V = (a, b), f(a) > 0, f(b) > 0, and f is strictly monotone on [a, b].
- (4) V = (a, b), f(a) > 0, f(b) > 0, and there is a < c < b with f strictly decreasing on [a, c] and strictly increasing on [c, b].
- (5) $V = (a, c) \cup (d, b)$, $a < c \le d < b$, f(a) > 0, f(b) > 0, and f strictly decreasing on [a, c], $f \equiv 0$ on [c, d], f strictly increasing on [d, b].

It should be noted that Theorem 1 implies that every open interval I with $I \cap P \neq \emptyset$ has nonempty intersection with components of U satisfying (4) or (5). Further, all five cases imply $E \cap P \neq \emptyset$. Let Q be the closure of $E \cap P$. Let (r, s) be an open interval with $(r, s) \cap Q \neq \emptyset$ and f|Q continuous on (r, s). It can be assumed that r and s are elements of components of U satisfying (4) or (5). Let (a_1, b_1) be the component of U containing r and (a_2, b_2) that containing s. It may be assumed that f is strictly increasing on $[r, b_1]$ and strictly decreasing on $[a_2, s]$. Further, $f(a_2) > 0$ and $f(b_1) > 0$.

Since the set $Q \cap (r, s)$ is compact and f|Q is continuous on (r, s), there is an x_0 in Q with $f(x_0) \ge f(x)$ for all x in $Q \cap (r, s)$. Since $E \cap P$ is dense in $Q, f(x_0) > 0$. It is further claimed that $f(x_0) \ge f(x)$ for all x in (r, s). To see this, let x_1 belong to $(r, s) \setminus Q$. Then either x_1 belongs to U or x_1 belongs to $P \setminus E$. If x_1 belongs to $U \cap (r, s)$ let I be the component of U containing x_1 . One of the five cases above describes the behavior of f on I. In any of these five cases, it is not hard to see that at least one endpoint e of f belongs to f on f and f of f are all f and f of f are the first f and f of f of f and f of f

COROLLARY 3. Let f be Baire* 1, Darboux on an open interval containing [0, 1]. If

$$\lim_{h \to 0^+} \sup_{h \to 0^+} \frac{f(x+h) + f(x-h) - 2f(x)}{h^2} \ge 0$$

for all x in [0, 1], then f is convex.

PROOF. Same as [4].

THEOREM 4. Let $f: [0, 1] \to R$ be Baire* 1, Darboux. Let C be the set of points at which f is continuous. Then $f([0, 1]) \setminus f(C)$ is at most countable.

PROOF. Let E be the union of those open intervals I with $f(I) \setminus f(C)$ at most countable. Then the set E is open. Moreover, U(f) is a subset of E. Thus E is nonempty, and if J is a component of E, then $f(J) \setminus f(C)$ is at most countable. It is necessary to show that E = [0, 1]. Assume instead that $H = [0, 1] \setminus E$ is nonempty. Then H is a closed nowhere dense set. Select an open interval (c, d), having endpoints in E, with $(c, d) \cap H \neq \emptyset$ and f|Hcontinuous on (c, d). The interval (c, d) is the disjoint union of the sets (c, d) $(d) \cap H$ and $(c, d) \cap E$. Consider $V = (c, d) \cap E$. This is an open set. Then let $V = \bigcup_{1 \le n < \infty} (a_n, b_n)$ and $f(V) = \bigcup_{1 \le n < \infty} f((a_n, b_n))$. For each n, $f((a_n, b_n)) \setminus f(C)$ is at most countable. Therefore, $f(V) \setminus f(C)$ is at most countable. Let D be the set of points of discontinuity of f, and consider (c, d)d) \cap H. This is the disjoint union of $A_1 = (c, d) \cap H \cap C$ and $A_2 = (c, d) \cap H \cap C$ $d) \cap H \cap D$. Obviously, $f(A_1) \setminus f(C) = \emptyset$. Finally, let x_0 belong to A_2 . Since f|H is continuous at x_0 and f is discontinuous at x_0 , there is a sequence x_m from E converging to x_0 , and an $\varepsilon > 0$ such that $|f(x_m) - f(x_0)| > \varepsilon$. It may be assumed that $f(x_m) > f(x_0) + \varepsilon$ and $x_m > x_0$ for all m. Let a_m be the left endpoint of the component of E containing x_m . (It may be that $a_m = x_0$.) Then $f(a_m)$ converges to $f(x_0)$. Let $\delta > 0$ be given. There is an M such that m > M implies that $f(a_m) < f(x_0) + \delta$. Since $f(x_m) > f(x_0) + \varepsilon$ and f has the Darboux property on (a_m, x_m) , the interval $(f(x_0) + \delta, f(x_0) + \epsilon)$ is a subset of f(V) for each $\delta > 0$. Therefore, $(f(x_0), f(x_0) + \epsilon) \subset f(V)$. This means that either $f(x_0)$ is contained in f(V) or is an endpoint of the interior of f(V). There are only countably many such endpoints. Hence $f(A_2) \setminus f(V)$ is at most countable. Since $f(c, d) = f(V) \cup f(A_1) \cup f(A_2)$, the above facts show that $f(c, d) \setminus f(C)$ is at most countable. Thus $(c, d) \subset E$, contradicting $(c, d) \cap H \neq \emptyset$.

In the next section of the paper L_p -smooth functions are considered. It will be pointed out that such functions are Baire* 1. The proof of this fact is a matter of reinterpretation and rearrangement of results in [5]. Finally, it is shown that Theorem 3 of this paper can be used to obtain a new result about the L_p -differentiability properties of L_p -smooth, Darboux functions.

DEFINITION. A measurable function $f: [0, 1] \to R$ is L_p -smooth, $p \ge 1$, if for each x in (0, 1)

$$\left\{\frac{1}{h}\int_0^h |f(x+t) + f(x-t) - 2f(x)|^p dt\right\}^{1/p} = o(h) \text{ as } h \to 0.$$

DEFINITION. A measurable function has at x_0 a first L_p -derivative, $L_p f'(x_0)$,

provided there is an a_0 such that

$$\left\{ \frac{1}{2h} \int_{-h}^{h} |f(x_0 + t) - a_0 - L_p f'(x_0) t|^p dt \right\}^{1/p} = o(h) \quad \text{as } h \to 0.$$

The following lemma, in slightly different form, can be found in [1, p. 53]. It will be needed in connection with Theorem 5. However, it is of independent interest.

LEMMA 1. Let $\sum f_n(x) = f(x)$ for all x in [0, 1] with $f_n(x)$ continuous for $n = 1, 2, \ldots$ Let $\sum a_n < +\infty$, and $a_n \geqslant 0$ for $n = 1, 2, \ldots$ Suppose that for each x in [0, 1] there is an N(x) such that n > N(x) implies that $|f_n(x)| \leqslant a_n$. Then for each closed set C there is an interval (a, b), with $(a, b) \cap C \neq \emptyset$, such that the series of functions converges uniformly on $(a, b) \cap C$. Hence f is Baire*

PROOF. See Auerbach [1, p. 53]. In [1] the closed set C is assumed to be an interval. However, the proof given applies equally well to any closed set.

THEOREM 5. Let f be L_p -smooth. Then f is Baire* 1.

PROOF. Suppose first that f is integrable. Then a perusal of the proof of Lemma 6 [5] and the lemma given above shows that f is Baire* 1.

In the general case, let $A_p = \{x: \epsilon > 0 \text{ implies } \int_{x-\epsilon}^{x+\epsilon} |f(t)|^p dt = \infty\}$. Then A_p is clearly closed, and Lemma 11 of [5, p. 89] shows that if f is L_p -smooth then A_p is countable. Let $[0, 1] \setminus A_p = B_p$. It follows readily, as in the proof of [4, p. 90], that f is Baire* 1 on each component of B_p . Since A_p is closed and countable, it is also immediate that f is Baire* 1 on [0, 1].

It should be noted that if a function f is smooth and measurable, then it is L_p -smooth. Therefore, Theorem 5 also applies to smooth measurable functions.

THEOREM 6. Let $f: [0, 1] \to R$ be L_p -smooth and Darboux, and let $S = \{x: L_p f' \text{ exists}\}$. Then $L_p f'$ has the Darboux property on S.

PROOF. It need only be shown that if a < b and $L_p f'(a) < 0 < L_p f'(b)$, then there is a point x_0 in (a, b) with $L_p f'(x_0) = 0$. Consider f on the interval [a, b]. If f is continuous on [a, b] then the result follows as in Theorem 3 of [5, p. 85]. If f is not continuous on [a, b], then because it is Darboux it cannot be monotone. Hence it is possible to select two points a_1 and b_1 with $a \le a_1 < b_1 \le b$ and $f(a_1) = f(b_1)$. The function f is Baire* 1, Darboux on $[a_1, b_1]$. Hence Theorem 3 of this paper implies that there is a point x_0 in (a_1, b_1) at which f has a local maximum or local minimum. Then when f is sufficiently small it follows that

$$|f(x_0 + t) - f(x_0)|^p \le |f(x_0 + t) + f(x_0 - t) - 2f(x_0)|^p$$
 for all $|t| < h$.

Hence f has an L_p -derivative of 0 at x_0 . Finally, it should be remarked that if f is smooth and measurable then $S = \{x: L_p f' \text{ exists}\}$ can be replaced by $\{x: f' \text{ exists}\}$.

REFERENCES

- 1. H. Auerbach, Sur les dérivées géneralisées, Fund. Math. 8 (1926), 49-55.
- 2. A. M. Bruckner, An affirmative answer to a problem of Zahorski, and some consequences, Michigan Math. J. 13 (1966), 15-26. MR 32 #5814.
- 3. H. T. Croft, A note on a Darboux continuous function, J. London Math. Soc. 38 (1963), 9-10. MR 26 #5103.
- 4. G. H. Hardy and W. W. Rogosinski, Fourier series, 2nd ed., Cambridge Univ. Press, 1950. MR 13, 457.
- 5. C. J. Neugebauer, Smoothness and differentiability in L_p , Studia Math. 25 (1964/65), 81-91. MR 31 #5942.
- 6. G. Tolstoff, Sur quelques propriétés des fonctions approximativement continues, Mat. Sb. 5 (47) (1939), 637-645. MR 1, 206.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN, MILWAUKEE, WISCONSIN 53201