ANOTHER PROOF OF DOUBLY INVARIANT SUBSPACE THEOREM

TAKAHIKO NAKAZI

ABSTRACT. The purpose of this note is to give a new proof of the doubly invariant subspace theorem in the context of weak-* Dirichlet algebras without Hilbert space methods.

Recall that by definition a weak-* Dirichlet algebra is an algebra A of essentially bounded measurable functions on a probability measure space (X, \mathcal{C}, m) such that (i) the constant functions lie in A; (ii) $A + \overline{A}$ is weak-* dense in $L^{\infty}(m)$ (the bar denotes conjugation, here and always); and (iii) for all f and g in A, $\int_X fg \ dm = \int_X f \ dm \int_X g \ dm$.

Recall that by definition a doubly invariant subspace is a closed (weak-* closed if $p = \infty$) subspace of $L^p(m)$ which is invariant under multiplication by functions in $A + \overline{A}$.

THEOREM. Let M be a doubly invariant subspace of $L^p(m)$ (0 . $Then <math>M = \chi_E L^p(m)$ for some measurable subset E (where χ_E denotes the characteristic function of E).

PROOF. Since $A+\overline{A}$ is weak-* dense in $L^{\infty}(m)$, M is invariant under multiplication by functions in $L^{\infty}(m)$ (i.e. $L^{\infty}(m)M\subseteq M$). Let E_f be the support set of f in M, i.e. the complement of a set of maximal measure on which f is null. If $f, g \in M$, there exists $h \in M$ with $E_h = E_f \cup E_g$. For since $L^{\infty}(m)M\subseteq M$, $(1-\chi_{E_f})g\in M$. Let $h=f+(1-\chi_{E_f})g$. Let E be the support set of M, i.e. the complement of a set of maximal measure on which all $f\in M$ are null. Suppose $\alpha=\sup\{m(E_f); f\in M\}$. Choose $f_n\in M$ with $m(E_{f_n})\to \alpha$ and $E_{f_1}\subseteq E_{f_2}\subseteq \ldots$. Alter the functions f_n so that their supports are disjoint. Define

$$q_N = \frac{\left|\sum_{n=1}^{N} 2^{-n} f_n\right|^2}{\left|\sum_{n=1}^{N} 2^{-n} f_n\right|^2 + 1/N} ;$$

then $q_N \to \chi_E$ a.e. as $N \to \infty$ and $|q_N| < 1$ a.e. For let $f_0 = \sum_{n=1}^{\infty} 2^{-n} f_n$; then for $p < \infty$, by the Lebesgue convergence theorem, $f_0 \in M$ and for $p = \infty$, by bounded convergence, $f_0 \in M$. It is clear that $m(E_{f_0}) = \alpha$ and, hence, $E_{f_0} = E$. Since $L^{\infty}(m)M \subseteq M$ and $\sum_{n=1}^{N} 2^{-n} f_n / (|\sum_{n=1}^{N} 2^{-n} f_n|^2 + 1/N) \in L^{\infty}(m)$, the

Received by the editors March 29, 1976.

AMS (MOS) subject classifications (1970). Primary 46J10, 46J15.

Key words and phrases. Doubly invariant subspace, weak-* Dirichlet algebra, function algebra.

 q_n belongs to M. Thus $\chi_E \in M$ and, hence, $M = \chi_E L^p(m)$. The proof with Hilbert space methods is well known [1], [2].

REFERENCES

- 1. M. Hasumi and T. P. Srinivasan, *Doubly invariant subspaces*. II, Pacific J. Math. 14 (1964), 525-535. MR 29 #1529.
- 2. T. P. Srinivasan, *Doubly invariant subspaces*, Pacific J. Math. 14 (1964), 701-707. MR 29 #1528.

RESEARCH INSTITUTE OF APPLIED ELECTRICITY, HOKKAIDO UNIVERSITY, SAPPORO, JAPAN