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A NOTE ON RIESZ OPERATORS

C. K. CHUI, P. W. SMITH AND J. D. WARD

Abstract. The purpose of this note is to settle a problem posed by Caradus,

Pfaffenberger, and Yood; namely, it is proved that every Riesz operator R

on a Hubert space has a decomposition R = C + Q where C is compact

and both Q and CQ — QC are quasinilpotent.

Let H denote a complex, separable, infinite dimensional Hubert space. In

[5], West showed that every Riesz operator was a decomposable Riesz

operator, i.e., R = C + Q where C is a compact operator and Q is quasi-

nilpotent. In general, this decomposition is not unique.

A Riesz operator is said to be fully decomposable if R is decomposable

and, in addition, C commutes with Q for some decomposition C and Q.

In [1, p. 58], an example of Gillespie and West was given showing that

there are some Riesz operators on H which are not fully decomposable. They

produced a Riesz operator R for which no decomposition could commute.

This leads to the following question proposed in [1, p. 59]: Can every Riesz

operator be decomposed in such a manner that the commutator CQ - QC is

quasinilpotent? The purpose of this note is to give a positive answer to this

question, and, in fact, a slightly stronger result is proved.

The key to our proof is a lemma of Gohberg and Krein which was stated

without proof in [3, p. 17] and was later stated and proved by Stampfli [4].

Lemma 1 [Gohberg-Krein, Stampfli]. Let E be a closed set in C. Let

o(T)\ E consist of isolated points {À } which of necessity cluster only on E. Let

each Xj be a point of finite multiplicity. Then, T = S + K where K is compact

and o(S) c E.

Our theorem will depend heavily on the "Stampfli decomposition" and on

its notation. Let us recall the pertinent steps. It was shown by Stampfli [4]

that for a T satisfying the hypotheses of Lemma 1,
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T =

^2   .

That is, if

> = -L f t\- TVP, = dX
'\K-\

where 0 < e- < min{minl¥;/(|A, - A,|), dist(X,, E)) for i ¥=f, then T has the

matrix form listed above, where L = QTQ and Q is the orthogonal projection

on (ZPjH)^. Now let {ak) be a countable dense subset of E. With each Xp

associate an ak as follows. Choose ak such that \ak - Xj\ < 2 dist(\y, £). For

simplicity write ak as ay. Next set

\ - ai.

K = \

Xy -a,

X2 -a2

X2 -a2

and define S = T — K. Obviously, AT is compact.

We are now ready to state our theorem.

Theorem 1. Let T satisfy the hypotheses of Lemma 1. Then in the " Stampfli

decomposition" T = S + K, the commutator SK — KS is a compact quasi-

nilpotent operator.

Proof. Clearly SK - KS is compact. Using the above notation, it is easily

seen that

SK - KS = SK -KS
0

K*\
0 )

where A^* denotes the product of K and the northeast block of S and 5"

denotes the northwest corner of 5.

We first show that SK - KS, viewed as an operator on 2/^/7 is quasi-

nilpotent. As a matrix SK - KS is a compact operator, upper triangular with
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main diagonal identically zero. Let Kn = P„(SK - KS)Pn where Pn projects

onto sp{f?p . . . , en) where {e¡}JLx is the orthonormal basis for which 5 is

upper triangular. Since Pn converges to the identity in the strong operator

topology, Kn converges uniformly to SK - KS. Clearly, each Kn is quasi-

nilpotent (actually nilpotent), so by [3, Theorem 4.1], SK — KS, as a uniform

limit of compact quasinilpotent operators, is quasinilpotent.

To complete the proof, it suffices to show that SK — KS is quasinilpotent.

By the Riesz spectral theorem for compact operators, this is equivalent to

showing that SK — KS has no nonzero eigenvalues.

So assume À^O and

SK - KS     K*
0 0

Upon equating components of the vectors, we see that

e2 = 0   and    (SK - KS )ex = Xex

which is impossible; thus SK - KS is quasinilpotent. This completes the

proof.

Corollary. For a Riesz operator R on a Hilbert space, we have R = C +

Q where C is compact and both Q and CQ — QC are quasinilpotent.
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