SPECTRAL PROPERTIES OF LINEAR OPERATORS FOR WHICH $T^{*} T$ AND $T+T^{*}$ COMMUTE

STEPHEN L. CAMPBELL AND RALPH GELLAR

Abstract

The class of linear operators for which $T^{*} T$ and $T+T^{*}$ commute is studied. It is shown that such operators are normaloid. If T is also completely nonnormal, then $\sigma(T)=\sigma\left(T^{*}\right)$. Also, isolated points of $\sigma(T)$ are reducing eigenvalues. Finally, if $\sigma(T)$ is a subset of either a vertical line or the real axis, then T is normal.

1. Introduction. Bounded linear operators T such that $T^{*} T$ and $T+T^{*}$ commute have been studied in [4], [5], and [6]. The set of such operators is denoted by $\theta[4]$. Embry has shown that if $T \in \theta$ and T is not normal, then $\sigma(T) \cap \sigma\left(T^{*}\right) \neq \varnothing[6]$. We shall show that if T is completely nonnormal and $T \in \theta$, then $\sigma(T)=\sigma\left(T^{*}\right)$. We shall also show that isolated points of $\sigma(T)$ are eigenvalues and operators in θ are normaloid.

While parts of this paper provide generalizations of some of the results of [4], the results of this paper tend to be of a different nature than those of [4]. The techniques used here are also different.
2. Notation and preliminary results. The notation used here is consistent with [4]. Alloperators are bounded, linear, and act on a separable Hilbert space \mathcal{H} For operators X, Y we let $[X, Y]=X Y-Y X$. Then $\theta=\left\{T:\left[T^{*} T, T+T^{*}\right]\right.$ $=0\}$. Let

$$
B(\lambda)=\left(\lambda-T^{*}\right)(\lambda-T)=\lambda^{2}-\lambda\left(T^{*}+T\right)+T^{*} T .
$$

For $T \in \theta$, and any value of $\lambda, B(\lambda)$ is normal. Let E be the spectral measure associated with the algebra generated by $T^{*} T$ and $T+T^{*}$. Then

$$
T^{*} T=\int_{\Delta} g(s) E(d s), \quad T+T^{*}=\int_{\Delta} h(s) E(d s)
$$

Δ a compact subset of the plane. The set of λ for which $B(\lambda)$ is not invertible is denoted $\hat{\sigma}(B)$. Clearly $\lambda \in \hat{\sigma}(B)$ if and only if $\bar{\lambda} \in \hat{\boldsymbol{\sigma}}(B)$. For a set $S, \partial S$ denotes its boundary.

Proposition 1. If $T \in \theta$, then $\partial \sigma\left(T^{*}\right) \cup \partial \sigma(T) \subseteq \hat{\sigma}(B) \subseteq \sigma(T) \cup \sigma\left(T^{*}\right)$.
Proof. The second inclusion is obvious. If $\lambda \in \partial \sigma(T)$, then λ is in the

[^0]approximate point spectrum of T. Thus there exist $\phi_{n} \in \mathscr{F}$ such that $B(\lambda) \phi_{n}$ $\rightarrow 0,\left\|\phi_{n}\right\|=1$. Hence $\lambda \in \hat{\sigma}(B)$. If $\lambda \in \partial \sigma\left(T^{*}\right)$, then $\bar{\lambda} \in \partial \sigma(T)$. Thus $\bar{\lambda} \in \hat{\sigma}(B)$ and $\lambda \in \hat{\sigma}(B)$ as desired.

We note that both inclusions in Proposition 1 may be proper for completely nonnormal $T \in \theta$. For example, if T is the unilateral shift, $\hat{\boldsymbol{\sigma}}(B)$ is the unit circle while $\sigma(T)$ is the unit disc. In this case, $\partial \sigma(T)=\hat{\sigma}(B)$.

Before being able to finish the development of our basic definitions, we need a fundamental fact about operators in θ.

Proposition 2. If $T \in \theta$, then $4 T^{*} T-\left(T^{*}+T\right)^{2} \geqslant 0$.
Proof. Suppose that $4 T^{*} T-\left(T^{*}+T\right)^{2} \geqslant 0$ is not true. Let $\Delta=\{s$: $\left.h^{2}(s)-4 g(s)>0\right\}$. Then $E(\Delta)>0$. Take $\lambda_{0} \in \Delta$ such that $h\left(\lambda_{0}\right), g\left(\lambda_{0}\right)$ are in the essential ranges of h and g respectively.

Let

$$
\lambda_{1}=\frac{h\left(\lambda_{0}\right)+\sqrt{h^{2}\left(\lambda_{0}\right)-4 g\left(\lambda_{0}\right)}}{2} \quad \text { and } \quad \lambda_{2}=\frac{h\left(\lambda_{0}\right)-\sqrt{h^{2}\left(\lambda_{0}\right)-4 g\left(\lambda_{0}\right)}}{2}
$$

Note that $\lambda^{2}-\lambda h\left(\lambda_{0}\right)+g\left(\lambda_{0}\right)$ has λ_{1}, λ_{2} as two distinct real roots. Let $\Delta_{1} \subseteq \Delta$ be such that $E\left(\Delta_{1}\right)>0$ and $h(\lambda)$ is close to $h\left(\lambda_{0}\right), g(\lambda)$ close to $g\left(\lambda_{0}\right)$ for all $\lambda \in \Delta_{1}$. Then $\lambda_{i}^{2}-\lambda_{i} h(\lambda)+g(\lambda)$ is small for all $\lambda \in \Delta_{1}$. Thus

$$
B\left(\lambda_{i}\right) E\left(\Delta_{1}\right)=\int_{\Delta_{1}}\left(\lambda_{i}^{2}-\lambda_{i} h(s)+g(s)\right) E(d s)
$$

is small in norm for $i=1,2$.
Hence if $\phi \in R\left(E\left(\Delta_{1}\right)\right)$, the range of $E\left(\Delta_{1}\right)$, and $\|\phi\|=1$, we have

$$
\left\|\left(\lambda_{i}-T\right) \phi\right\|^{2}=\left(\left(\lambda_{i}-T^{*}\right)\left(\lambda_{i}-T\right) \phi, \phi\right)=\left(B\left(\lambda_{i}\right) \phi, \phi\right)
$$

is small for $i=1,2$. But $\lambda_{1} \neq \lambda_{2}$ so this is a contradiction and $E(\Delta)=0$ as desired.

For $T \in \theta$, let

$$
\begin{equation*}
C=\left(\left(T^{*}+T\right)+i \sqrt{4 T^{*} T-\left(T^{*}+T\right)^{2}}\right) / 2 \tag{1}
\end{equation*}
$$

From (1) and Proposition 2 we have $C+C^{*}=T+T^{*}, C^{*} C=T^{*} T, B(\lambda)$ $=\left(\lambda-C^{*}\right)(\lambda-C), C$ is normal, and $\hat{\sigma}(B)=\sigma(C) \cup \sigma\left(C^{*}\right)$.
$\sigma(C)$ is contained in the closed upper half plane. The spectral measure associated with C will be denoted by F so that $C=\int_{\sigma(C)} s F(d s)$.
3. Operators in θ are normaloid. We will now develop several useful facts about operators in θ. The real numbers are denoted by \Re.

Theorem 1. If $T \in \theta$, then $F(\Re)$ reduces T and $T F(\Re)$ is hermitian.
Proof. Partition $[-\|T\|,\|T\|]$ into n equal pieces of length $2\|T\| / n$. Let λ_{i} be the midpoint of the i th piece, F_{i} the associated spectral projection of the i th piece. Then $\left\|\left(C-\lambda_{i}\right) F_{i}\right\| \leqslant\|T\| / n$. But

$$
\begin{aligned}
\|T\|^{2} / n^{2} & \geqslant\left\|\left(C-\lambda_{i}\right) F_{i} \phi\right\|^{2}=\left(\left(C-\lambda_{i}\right) F_{i} \phi,\left(C-\lambda_{i}\right) F_{i} \phi\right) \\
& =\left(\left(C^{*}-\lambda_{i}\right)\left(C-\lambda_{i}\right) F_{i} \phi, F_{i} \phi\right)=\left(\left(T^{*}-\lambda_{i}\right)\left(T-\lambda_{i}\right) F_{i} \phi, F_{i} \phi\right) \\
& =\left\|\left(T-\lambda_{i}\right) F_{i} \phi\right\|^{2} .
\end{aligned}
$$

Thus $\left\|\left(T-\lambda_{i}\right) F_{i}\right\| \leqslant\|T\| / n$. Hence, $\left\|(C-T) F_{i}\right\| \leqslant 2\|T\| / n$. But then for any $\phi \in \mathscr{K}$,

$$
\begin{aligned}
\|(C-T) F(\Re) \phi\| & \leqslant \sum_{i=1}^{n}\left\|(C-T) F_{i} \phi\right\| \leqslant \sum_{i=1}^{n} \frac{2\|T\|}{n}\left\|F_{i} \phi\right\| \\
& \leqslant\left(\sum_{i=1}^{n}\left(\frac{2\|T\|}{n}\right)^{2}\right)^{1 / 2}\left(\sum_{i=1}^{n}\left\|F_{i} \phi\right\|^{2}\right)^{1 / 2}=\frac{2\|T\|}{\sqrt{ } n}\|F(\Re) \phi\| .
\end{aligned}
$$

Thus $T F(\Re)=C F(\Re)$. But $T+T^{*}=C+C^{*}$ so that $C^{*} F(\Re)=T^{*} F(\Re)$. Hence

$$
T F(\Re)=C F(\Re)=F(\Re) C=\left(C^{*} F(\Re)\right)^{*}=\left(T^{*} F(\Re)\right)^{*}=F(\Re) T
$$

as desired.
Corollary 1. If $T \in \theta$ is completely nonnormal, then $F(\mathscr{\Re})=0$, or equivalently, $C-C^{*}$ is one-to-one.

Corollary 2. If $T \in \theta$ and $\sigma(T) \subseteq \Re$, then $T=T^{*}$.
Corollary 2 follows from Proposition 1 and Theorem 1.
In [8] (see also [4]) it was shown how to get a block decomposition for $T \in \theta$ if ($T^{*} T-T T^{*}$) was not one-to-one. For an arbitrary $T,\left[T^{*}, T\right]$ may be invertible. Whether $T \in \theta$ implies $\left[T^{*}, T\right]$ has a kernel is unknown. Note, however, that

Proposition 3. If $T \in \theta$, then $0 \in \sigma\left(\left[T^{*}, T\right]\right)$.
Proof. We may assume T is nonnormal. Then $\sigma(T) \llbracket \Re$ by Corollary 2. Hence there exists λ_{0} in the approximate point spectrum of T, λ_{0} not real. Thus there exists $\phi_{n},\left\|\phi_{n}\right\|=1$, such that $\left(T-\lambda_{0}\right) \phi_{n} \rightarrow 0$. Then $B\left(\lambda_{0}\right) \phi_{n} \rightarrow 0$. But $B\left(\lambda_{0}\right)$ is normal, so that $B\left(\lambda_{0}\right)^{*} \phi_{n}=B\left(\bar{\lambda}_{0}\right) \phi_{n} \rightarrow 0$. Since

$$
\left(\bar{\lambda}_{0}-T^{*}\right)\left(\bar{\lambda}_{0}-T\right) \phi_{n}=\left(\bar{\lambda}_{0}-\lambda_{0}\right)\left(\bar{\lambda}_{0}-T^{*}\right) \phi_{n}+\left(\bar{\lambda}_{0}-T^{*}\right)\left(\lambda_{0}-T\right) \phi_{n}
$$

we have $\left(T^{*}-\bar{\lambda}_{0}\right) \phi_{n} \rightarrow 0$ also. Now $\left[T^{*}, T\right]=\left[T^{*}-\bar{\lambda}_{0}, T-\lambda_{0}\right]$. Thus $\left[T^{*}, T\right] \phi_{n} \rightarrow 0$ and $0 \in \sigma\left(\left[T^{*}, T\right]\right)$.

Let $r(T)$ denote the spectral radius of T.
Theorem 2. If $T \in \theta$, then $r(T)=\|T\|$. That is, T is normaloid.
Proof.

$$
\begin{aligned}
r(T)^{2} & =\sup _{\lambda \in \sigma(T)}|\lambda|^{2}=\sup _{\lambda \in \sigma(T) \cup \sigma\left(T^{*}\right)}|\lambda|^{2} \\
& =\sup _{\lambda \in \partial \sigma(T) \cup \partial \sigma\left(T^{*}\right)}|\lambda|^{2}=\sup _{\lambda \in \hat{\sigma}(B)}|\lambda|^{2}=\sup _{\lambda \in \sigma(C) \cup \sigma\left(C^{*}\right)}|\lambda|^{2} \\
& =\left\|C^{*} C\right\|=\left\|T^{*} T\right\|=\|T\|^{2} .
\end{aligned}
$$

4. $\sigma(T)=\sigma\left(T^{*}\right)$. If $T=A+Q$ where $A=A^{*},[A, Q]=0$, and $\left[Q, Q^{*} Q\right]$ $=0$, then $T \in \theta$ and $\sigma(T)$ is the union of discs centered on the real axis. That such T are in θ is obvious. That $\sigma(T)$ is a union of discs follows from the canonical form for operators Q such that $\left[Q, Q^{*} Q\right]=0$ given in [3] and the fact that the spectrum of the unilateral shift is a disc [7]. The results of this and the next section show that the spectrum of any $T \in \theta$ has many of the same features as a union of discs.

Theorem 3. If $T \in \theta$ and T is completely nonnormal, then $\sigma(T)=\sigma\left(T^{*}\right)$.
Proof. Suppose $T \in \theta$. It suffices to show that $\sigma(T) \subseteq \sigma\left(T^{*}\right)$. Note that $\sigma(T) \backslash \sigma\left(T^{*}\right) \subseteq \sigma(C) \cup \sigma\left(C^{*}\right)$. Hence, if K is any compact subset of $\sigma(T) \backslash \sigma\left(T^{*}\right)$ containing a set relatively open in $\sigma(T) \backslash \sigma\left(T^{*}\right)$, then $F(K) \neq 0$. Note also that $K \cap \Re=\varnothing$. Assume $\sigma(T) \llbracket \sigma\left(T^{*}\right)$. There exists, then, a compact set $K \subset \sigma(T) \backslash \sigma\left(T^{*}\right), F(K) \neq 0$, and a Jordan contour Ω around K such that $\sigma\left(T^{*}\right)$ is contained in the unbounded component of the complement of Ω. Let $\tilde{C}=C F(K), \tilde{B}(\lambda)=(\lambda-\tilde{C})\left(\lambda-\tilde{C}^{*}\right)$. Assume K is in the upper half plane. A similar proof works if K is in the lower half plane. Note that $\hat{\sigma}(\tilde{B})=K \cup \bar{K}$ and $B(\lambda) F(K)=\tilde{B}(\lambda) F(K)$. Now for $\lambda \in \Omega$,

$$
\begin{aligned}
\left(\lambda-T^{*}\right)^{-1} F(K) & =\left(\lambda-T^{*}\right)^{-1} \tilde{B}(\lambda) \tilde{B}^{-1}(\lambda) F(K) \\
& =\left(\lambda-T^{*}\right)^{-1} B(\lambda) \tilde{B}^{-1}(\lambda) F(K)=(\lambda-T) \tilde{B}^{-1}(\lambda) F(K)
\end{aligned}
$$

But $\int_{\Omega}\left(\lambda-T^{*}\right)^{-1} d \lambda=0$. Thus

$$
\begin{aligned}
0 & =\int_{\Omega}(\lambda-T) \tilde{B}^{-1}(\lambda)\left(\tilde{C}-\tilde{C}^{*}\right) F(K) d \lambda \\
& =\int_{\Omega}(\lambda-T)\left\{(\lambda-\tilde{C})^{-1}-\left(\lambda-\tilde{C}^{*}\right)^{-1}\right\} F(K) d \lambda \\
& =\int_{\Omega}(\lambda-T)(\lambda-\tilde{C})^{-1} F(K) d \lambda \\
& =(\tilde{C}-T) F(K)=(C-T) F(K)
\end{aligned}
$$

But $C+C^{*}=T+T^{*}$ so that we have

$$
T F(K)=C F(K)=F(K) C=\left(C^{*} F(K)\right)^{*}=\left(T^{*} F(K)\right)^{*}=F(K) T
$$

Hence $F(K)$ reduces T and $T F(K)$ is normal which contradicts the complete nonnormality of T.

Corollary 3. If $T \in \theta$, then $T=T_{1} \oplus T_{2}$ where $T_{1} \in \theta, T_{1}$ is completely nonnormal, $\sigma\left(T_{1}\right)=\sigma\left(T_{1}^{*}\right)$, and T_{2} is normal.
5. Reducing components. We shall say that a set of complex numbers S is balanced if: $\lambda \in S$ if and only if $\bar{\lambda} \in S$. A subset of $\sigma(T)$ will be called a piece if it is both open and closed in the topology induced on $\sigma(T)$ by the complex numbers.

Theorem 4. If $T \in \theta$ and K is a balanced piece of $\sigma(T)$, then relative to the decomposition of \mathcal{H} given by $F(K), T=T_{1} \oplus T_{2}$ where $\sigma\left(T_{1}\right)=K$ and $\sigma\left(T_{2}\right)$ $=\sigma(T) \backslash K$.

Proof. Take a balanced piece K of $\sigma(T)$. Note that $K \cap \hat{\sigma}(B)$ is a balanced piece of $\hat{\sigma}(B)$. Let Ω be a (possibly disconnected) contour around K with $\sigma(T) \backslash K$ on the outside. Assume for simplicity that T is completely nonnormal.

Now

$$
\begin{aligned}
\int_{\Omega}\left(C-C^{*}\right) B(\lambda)^{-1} d \lambda & =\int_{\Omega}(\lambda-C)^{-1}-\left(\lambda-C^{*}\right)^{-1} d \lambda \\
& =F_{C}(K)-F_{C^{*}}(K)=F_{C}(K)-F_{C}(K)=0 .
\end{aligned}
$$

But $C-C^{*}$ is one-to-one by Corollary 1 so that

$$
\begin{equation*}
\int_{\Omega} B(\lambda)^{-1} d \lambda=0 \tag{2}
\end{equation*}
$$

We also have that

$$
\begin{aligned}
\int_{\Omega} \lambda\left(C-C^{*}\right) B(\lambda)^{-1} d \lambda & =\int_{\Omega} \lambda(\lambda-C)^{-1}-\lambda\left(\lambda-C^{*}\right)^{-1} d \lambda \\
& =\left(C-C^{*}\right) F(K)
\end{aligned}
$$

so that

$$
\begin{equation*}
\int_{\Omega} \lambda B(\lambda)^{-1} d \lambda=F(K) . \tag{3}
\end{equation*}
$$

But then by (2) and (3) we have

$$
\int_{\Omega}(\lambda-T)^{-1} d \lambda=\int_{\Omega} B(\lambda)^{-1}\left(\lambda-T^{*}\right) d \lambda=\int_{\Omega} \lambda B(\lambda)^{-1} d \lambda=F(K)
$$

Thus $F(K)$ reduces T and $\sigma(T \mid F(K) \mathcal{H})=K$ as desired.
Proposition 4. If $T \in \theta$ and $\sigma(T)$ is a subset of a vertical line, then T is normal.

Proof. Let x_{0} be real and suppose $T \in \theta, \sigma(T) \subseteq\left\{\lambda: \operatorname{Re} \lambda=x_{0}\right\}$. Then $T^{*}+T=C^{*}+C=2 x_{0} I$ by Proposition 1 and the fact that $\hat{\sigma}(B)=\sigma(C)$ $\cup \sigma\left(C^{*}\right)$. Hence, $\left[T, T^{*}\right]=0$ and T is normal.

Theorem 5. If λ_{0} is an isolated point of $\sigma(T)$ and $T \in \theta$, then λ_{0} is a reducing eigenvalue of T.

Proof. We may assume that T is completely nonnormal and hence $\lambda_{0}, \bar{\lambda}_{0}$ are both isolated. Thus $\left\{\lambda_{0}, \bar{\lambda}_{0}\right\}$ is a balanced piece of $\sigma(T)$. That λ_{0} is a reducing eigenvalue now follows from Theorem 4 and Proposition 4.
6. Comment. Using the terminology of [1] and [2] we have shown that if $T \in \theta$, then T is reduction-normaloid, reduction-spectraloid, spectraloid, isoloid, and reduction-isoloid.

References

1. S. K. Berberian, Some conditions on an operator implying normality, Math. Ann. 184 (1969/70), 188-192. MR 41 \#862.
2. _, Some conditions on an operator implying normality. II, Proc. Amer. Math. Soc. 26 (1970), 277-281. MR 42 \#884.
3. Arlen Brown, On a class of operators, Proc. Amer. Math. Soc. 4 (1953), 723-728. MR 15, 538.
4. Stephen L. Campbell, Linear operators for which $T^{*} T$ and $T+T^{*}$ commute, Pacific J. Math. 61 (1975), 53-58.
5. - Operator-valued inner functions analytic on the closed disc. II, Pacific J. Math. 60 (1975), 37-50.
6. Mary R. Embry, A connection between commutativity and separation of spectra of operators, Acta. Sci. Math. (Szeged) 32 (1971), 235-237. MR 46 \# 2459.
7. Paul R. Halmos, A Hilbert space problem book, Van Nostrand, Princeton, N.J., 1967. MR 34 \#8178.
8. Bernard B. Morrel, A decomposition for some operators, Indiana Univ. Math. J. 23 (1973/74), 497-511. MR 49 \#7823.

Department of Mathematics, North Carolina State University, Raleigh, North CaroLina 27607

[^0]: Received by the editors August 29, 1975.
 AMS (MOS) subject classifications (1970). Primary 47A15, 47B99; Secondary 47B20.
 Key words and phrases. Operator such that $T^{*} T$ and $T+T^{*}$ commute, spectrum, normaloid operator, spectraloid operator, isoloid operator.

