SPECTRAL PROPERTIES OF LINEAR OPERATORS FOR WHICH T^*T AND $T+T^*$ COMMUTE

STEPHEN L. CAMPBELL AND RALPH GELLAR

ABSTRACT. The class of linear operators for which T^*T and $T + T^*$ commute is studied. It is shown that such operators are normaloid. If T is also completely nonnormal, then $\sigma(T) = \sigma(T^*)$. Also, isolated points of $\sigma(T)$ are reducing eigenvalues. Finally, if $\sigma(T)$ is a subset of either a vertical line or the real axis, then T is normal.

1. **Introduction.** Bounded linear operators T such that T^*T and $T + T^*$ commute have been studied in [4], [5], and [6]. The set of such operators is denoted by θ [4]. Embry has shown that if $T \in \theta$ and T is not normal, then $\sigma(T) \cap \sigma(T^*) \neq \emptyset$ [6]. We shall show that if T is completely nonnormal and $T \in \theta$, then $\sigma(T) = \sigma(T^*)$. We shall also show that isolated points of $\sigma(T)$ are eigenvalues and operators in θ are normaloid.

While parts of this paper provide generalizations of some of the results of [4], the results of this paper tend to be of a different nature than those of [4]. The techniques used here are also different.

2. Notation and preliminary results. The notation used here is consistent with [4]. All operators are bounded, linear, and act on a separable Hilbert space \mathcal{K} . For operators X, Y we let [X, Y] = XY - YX. Then $\theta = \{T: [T^*T, T + T^*] = 0\}$. Let

$$B(\lambda) = (\lambda - T^*)(\lambda - T) = \lambda^2 - \lambda(T^* + T) + T^*T.$$

For $T \in \theta$, and any value of λ , $B(\lambda)$ is normal. Let E be the spectral measure associated with the algebra generated by T^*T and $T + T^*$. Then

$$T^*T = \int_{\Lambda} g(s)E(ds), \qquad T + T^* = \int_{\Lambda} h(s)E(ds),$$

 Δ a compact subset of the plane. The set of λ for which $B(\lambda)$ is not invertible is denoted $\hat{\sigma}(B)$. Clearly $\lambda \in \hat{\sigma}(B)$ if and only if $\overline{\lambda} \in \hat{\sigma}(B)$. For a set S, ∂S denotes its boundary.

Proposition 1. If $T \in \theta$, then $\partial \sigma(T^*) \cup \partial \sigma(T) \subseteq \hat{\sigma}(B) \subseteq \sigma(T) \cup \sigma(T^*)$.

PROOF. The second inclusion is obvious. If $\lambda \in \partial \sigma(T)$, then λ is in the

Received by the editors August 29, 1975.

AMS (MOS) subject classifications (1970). Primary 47A15, 47B99; Secondary 47B20.

Key words and phrases. Operator such that T^*T and $T+T^*$ commute, spectrum, normaloid operator, spectraloid operator, isoloid operator.

Copyright © 1977, American Mathematical Society

approximate point spectrum of T. Thus there exist $\phi_n \in \mathcal{K}$ such that $B(\lambda)\phi_n \to 0$, $\|\phi_n\| = 1$. Hence $\lambda \in \hat{\sigma}(B)$. If $\lambda \in \partial \sigma(T^*)$, then $\bar{\lambda} \in \partial \sigma(T)$. Thus $\bar{\lambda} \in \hat{\sigma}(B)$ and $\lambda \in \hat{\sigma}(B)$ as desired. \square

We note that both inclusions in Proposition 1 may be proper for completely nonnormal $T \in \theta$. For example, if T is the unilateral shift, $\hat{\sigma}(B)$ is the unit circle while $\sigma(T)$ is the unit disc. In this case, $\partial \sigma(T) = \hat{\sigma}(B)$.

Before being able to finish the development of our basic definitions, we need a fundamental fact about operators in θ .

PROPOSITION 2. If $T \in \theta$, then $4T^*T - (T^* + T)^2 \ge 0$.

PROOF. Suppose that $4T^*T - (T^* + T)^2 \ge 0$ is not true. Let $\Delta = \{s: h^2(s) - 4g(s) > 0\}$. Then $E(\Delta) > 0$. Take $\lambda_0 \in \Delta$ such that $h(\lambda_0)$, $g(\lambda_0)$ are in the essential ranges of h and g respectively.

Let

$$\lambda_1 = \frac{\mathit{h}(\lambda_0) + \sqrt{\mathit{h}^2(\lambda_0) - 4\mathit{g}(\lambda_0)}}{2} \quad \text{and} \quad \lambda_2 = \frac{\mathit{h}(\lambda_0) - \sqrt{\mathit{h}^2(\lambda_0) - 4\mathit{g}(\lambda_0)}}{2} \,.$$

Note that $\lambda^2 - \lambda h(\lambda_0) + g(\lambda_0)$ has λ_1, λ_2 as two distinct real roots. Let $\Delta_1 \subseteq \Delta$ be such that $E(\Delta_1) > 0$ and $h(\lambda)$ is close to $h(\lambda_0)$, $g(\lambda)$ close to $g(\lambda_0)$ for all $\lambda \in \Delta_1$. Then $\lambda_i^2 - \lambda_i h(\lambda) + g(\lambda)$ is small for all $\lambda \in \Delta_1$. Thus

$$B(\lambda_i)E(\Delta_1) = \int_{\Delta_1} (\lambda_i^2 - \lambda_i h(s) + g(s))E(ds)$$

is small in norm for i = 1, 2.

Hence if $\phi \in R(E(\Delta_1))$, the range of $E(\Delta_1)$, and $\|\phi\| = 1$, we have

$$\|(\lambda_i - T)\phi\|^2 = ((\lambda_i - T^*)(\lambda_i - T)\phi, \phi) = (B(\lambda_i)\phi, \phi)$$

is small for i=1,2. But $\lambda_1 \neq \lambda_2$ so this is a contradiction and $E(\Delta)=0$ as desired. \square

For $T \in \theta$, let

(1)
$$C = ((T^* + T) + i\sqrt{4T^*T - (T^* + T)^2})/2.$$

From (1) and Proposition 2 we have $C + C^* = T + T^*$, $C^*C = T^*T$, $B(\lambda) = (\lambda - C^*)(\lambda - C)$, C is normal, and $\hat{\sigma}(B) = \sigma(C) \cup \sigma(C^*)$.

 $\sigma(C)$ is contained in the closed upper half plane. The spectral measure associated with C will be denoted by F so that $C = \int_{\sigma(C)} sF(ds)$.

3. Operators in θ are normaloid. We will now develop several useful facts about operators in θ . The real numbers are denoted by \Re .

THEOREM 1. If $T \in \theta$, then $F(\Re)$ reduces T and $TF(\Re)$ is hermitian.

PROOF. Partition $[-\|T\|, \|T\|]$ into n equal pieces of length $2\|T\|/n$. Let λ_i be the midpoint of the ith piece, F_i the associated spectral projection of the ith piece. Then $\|(C - \lambda_i)F_i\| \le \|T\|/n$. But

$$||T||^{2}/n^{2} \geqslant ||(C - \lambda_{i})F_{i}\phi||^{2} = ((C - \lambda_{i})F_{i}\phi, (C - \lambda_{i})F_{i}\phi)$$

$$= ((C^{*} - \lambda_{i})(C - \lambda_{i})F_{i}\phi, F_{i}\phi) = ((T^{*} - \lambda_{i})(T - \lambda_{i})F_{i}\phi, F_{i}\phi)$$

$$= ||(T - \lambda_{i})F_{i}\phi||^{2}.$$

Thus $\|(T - \lambda_i)F_i\| \le \|T\|/n$. Hence, $\|(C - T)F_i\| \le 2\|T\|/n$. But then for any $\phi \in \mathcal{H}$,

$$\begin{aligned} \|(C-T)F(\mathfrak{R})\phi\| &\leq \sum_{i=1}^{n} \|(C-T)F_{i}\phi\| \leq \sum_{i=1}^{n} \frac{2\|T\|}{n} \|F_{i}\phi\| \\ &\leq \left(\sum_{i=1}^{n} \left(\frac{2\|T\|}{n}\right)^{2}\right)^{1/2} \left(\sum_{i=1}^{n} \|F_{i}\phi\|^{2}\right)^{1/2} = \frac{2\|T\|}{\sqrt{n}} \|F(\mathfrak{R})\phi\|. \end{aligned}$$

Thus $TF(\mathfrak{R}) = CF(\mathfrak{R})$. But $T + T^* = C + C^*$ so that $C^*F(\mathfrak{R}) = T^*F(\mathfrak{R})$. Hence

$$TF(\mathfrak{R}) = CF(\mathfrak{R}) = F(\mathfrak{R})C = (C^*F(\mathfrak{R}))^* = (T^*F(\mathfrak{R}))^* = F(\mathfrak{R})T$$

as desired.

COROLLARY 1. If $T \in \theta$ is completely nonnormal, then $F(\dot{\mathfrak{R}}) = 0$, or equivalently, $C - C^*$ is one-to-one.

COROLLARY 2. If $T \in \theta$ and $\sigma(T) \subseteq \Re$, then $T = T^*$.

Corollary 2 follows from Proposition 1 and Theorem 1.

In [8] (see also [4]) it was shown how to get a block decomposition for $T \in \theta$ if $(T^*T - TT^*)$ was not one-to-one. For an arbitrary T, $[T^*, T]$ may be invertible. Whether $T \in \theta$ implies $[T^*, T]$ has a kernel is unknown. Note, however, that

Proposition 3. If $T \in \theta$, then $0 \in \sigma([T^*, T])$.

PROOF. We may assume T is nonnormal. Then $\sigma(T) \nsubseteq \Re$ by Corollary 2. Hence there exists λ_0 in the approximate point spectrum of T, λ_0 not real. Thus there exists ϕ_n , $\|\phi_n\| = 1$, such that $(T - \lambda_0)\phi_n \to 0$. Then $B(\lambda_0)\phi_n \to 0$. But $B(\lambda_0)$ is normal, so that $B(\lambda_0)^*\phi_n = B(\overline{\lambda}_0)\phi_n \to 0$. Since

$$(\overline{\lambda}_0 - T^*)(\overline{\lambda}_0 - T)\phi_n = (\overline{\lambda}_0 - \lambda_0)(\overline{\lambda}_0 - T^*)\phi_n + (\overline{\lambda}_0 - T^*)(\lambda_0 - T)\phi_n,$$

we have $(T^* - \overline{\lambda}_0)\phi_n \to 0$ also. Now $[T^*, T] = [T^* - \overline{\lambda}_0, T - \lambda_0]$. Thus $[T^*, T]\phi_n \to 0$ and $0 \in \sigma([T^*, T])$. \square

Let r(T) denote the spectral radius of T.

THEOREM 2. If $T \in \theta$, then r(T) = ||T||. That is, T is normaloid.

Proof.

$$r(T)^{2} = \sup_{\lambda \in \sigma(T)} |\lambda|^{2} = \sup_{\lambda \in \sigma(T) \cup \sigma(T^{*})} |\lambda|^{2}$$

$$= \sup_{\lambda \in \partial \sigma(T) \cup \partial \sigma(T^{*})} |\lambda|^{2} = \sup_{\lambda \in \hat{\sigma}(B)} |\lambda|^{2} = \sup_{\lambda \in \sigma(C) \cup \sigma(C^{*})} |\lambda|^{2}$$

$$= ||C^{*}C|| = ||T^{*}T|| = ||T||^{2}. \quad \Box$$

4. $\sigma(T) = \sigma(T^*)$. If T = A + Q where $A = A^*$, [A, Q] = 0, and $[Q, Q^*Q] = 0$, then $T \in \theta$ and $\sigma(T)$ is the union of discs centered on the real axis. That such T are in θ is obvious. That $\sigma(T)$ is a union of discs follows from the canonical form for operators Q such that $[Q, Q^*Q] = 0$ given in [3] and the fact that the spectrum of the unilateral shift is a disc [7]. The results of this and the next section show that the spectrum of any $T \in \theta$ has many of the same features as a union of discs.

THEOREM 3. If $T \in \theta$ and T is completely nonnormal, then $\sigma(T) = \sigma(T^*)$.

PROOF. Suppose $T \in \theta$. It suffices to show that $\sigma(T) \subseteq \sigma(T^*)$. Note that $\sigma(T) \setminus \sigma(T^*) \subseteq \sigma(C) \cup \sigma(C^*)$. Hence, if K is any compact subset of $\sigma(T) \setminus \sigma(T^*)$ containing a set relatively open in $\sigma(T) \setminus \sigma(T^*)$, then $F(K) \neq 0$. Note also that $K \cap \Re = \emptyset$. Assume $\sigma(T) \nsubseteq \sigma(T^*)$. There exists, then, a compact set $K \subset \sigma(T) \setminus \sigma(T^*)$, $F(K) \neq 0$, and a Jordan contour Ω around K such that $\sigma(T^*)$ is contained in the unbounded component of the complement of Ω . Let $\tilde{C} = CF(K)$, $\tilde{B}(\lambda) = (\lambda - \tilde{C})(\lambda - \tilde{C}^*)$. Assume K is in the upper half plane. A similar proof works if K is in the lower half plane. Note that $\hat{\sigma}(\tilde{B}) = K \cup \overline{K}$ and $B(\lambda)F(K) = \tilde{B}(\lambda)F(K)$. Now for $\lambda \in \Omega$,

$$(\lambda - T^*)^{-1} F(K) = (\lambda - T^*)^{-1} \tilde{B}(\lambda) \tilde{B}^{-1}(\lambda) F(K)$$

$$= (\lambda - T^*)^{-1} B(\lambda) \tilde{B}^{-1}(\lambda) F(K) = (\lambda - T) \tilde{B}^{-1}(\lambda) F(K).$$
But $\int_{\Omega} (\lambda - T^*)^{-1} d\lambda = 0$. Thus
$$0 = \int_{\Omega} (\lambda - T) \tilde{B}^{-1}(\lambda) (\tilde{C} - \tilde{C}^*) F(K) d\lambda$$

$$= \int_{\Omega} (\lambda - T) \{ (\lambda - \tilde{C})^{-1} - (\lambda - \tilde{C}^*)^{-1} \} F(K) d\lambda$$

$$= \int_{\Omega} (\lambda - T) (\lambda - \tilde{C})^{-1} F(K) d\lambda$$

$$= (\tilde{C} - T) F(K) = (C - T) F(K).$$

But $C + C^* = T + T^*$ so that we have

$$TF(K) = CF(K) = F(K)C = (C^*F(K))^* = (T^*F(K))^* = F(K)T.$$

Hence F(K) reduces T and TF(K) is normal which contradicts the complete nonnormality of T. \square

COROLLARY 3. If $T \in \theta$, then $T = T_1 \oplus T_2$ where $T_1 \in \theta$, T_1 is completely nonnormal, $\sigma(T_1) = \sigma(T_1^*)$, and T_2 is normal.

5. Reducing components. We shall say that a set of complex numbers S is balanced if: $\lambda \in S$ if and only if $\overline{\lambda} \in S$. A subset of $\sigma(T)$ will be called a piece if it is both open and closed in the topology induced on $\sigma(T)$ by the complex numbers.

THEOREM 4. If $T \in \theta$ and K is a balanced piece of $\sigma(T)$, then relative to the decomposition of \mathcal{K} given by F(K), $T = T_1 \oplus T_2$ where $\sigma(T_1) = K$ and $\sigma(T_2) = \sigma(T) \setminus K$.

PROOF. Take a balanced piece K of $\sigma(T)$. Note that $K \cap \hat{\sigma}(B)$ is a balanced piece of $\hat{\sigma}(B)$. Let Ω be a (possibly disconnected) contour around K with $\sigma(T)\backslash K$ on the outside. Assume for simplicity that T is completely nonnormal. Now

$$\int_{\Omega} (C - C^*) B(\lambda)^{-1} d\lambda = \int_{\Omega} (\lambda - C)^{-1} - (\lambda - C^*)^{-1} d\lambda$$
$$= F_C(K) - F_{C^*}(K) = F_C(K) - F_C(K) = 0.$$

But $C - C^*$ is one-to-one by Corollary 1 so that

(2)
$$\int_{\Omega} B(\lambda)^{-1} d\lambda = 0.$$

We also have that

$$\int_{\Omega} \lambda (C - C^*) B(\lambda)^{-1} d\lambda = \int_{\Omega} \lambda (\lambda - C)^{-1} - \lambda (\lambda - C^*)^{-1} d\lambda$$
$$= (C - C^*) F(K)$$

so that

(3)
$$\int_{\Omega} \lambda B(\lambda)^{-1} d\lambda = F(K).$$

But then by (2) and (3) we have

$$\int_{\Omega} (\lambda - T)^{-1} d\lambda = \int_{\Omega} B(\lambda)^{-1} (\lambda - T^*) d\lambda = \int_{\Omega} \lambda B(\lambda)^{-1} d\lambda = F(K).$$

Thus F(K) reduces T and $\sigma(T|F(K)\mathcal{K}) = K$ as desired. \square

PROPOSITION 4. If $T \in \theta$ and $\sigma(T)$ is a subset of a vertical line, then T is normal.

PROOF. Let x_0 be real and suppose $T \in \theta$, $\sigma(T) \subseteq \{\lambda : \operatorname{Re} \lambda = x_0\}$. Then $T^* + T = C^* + C = 2x_0I$ by Proposition 1 and the fact that $\hat{\sigma}(B) = \sigma(C) \cup \sigma(C^*)$. Hence, $[T, T^*] = 0$ and T is normal. \square

THEOREM 5. If λ_0 is an isolated point of $\sigma(T)$ and $T \in \theta$, then λ_0 is a reducing eigenvalue of T.

PROOF. We may assume that T is completely nonnormal and hence λ_0 , $\overline{\lambda}_0$ are both isolated. Thus $\{\lambda_0, \overline{\lambda}_0\}$ is a balanced piece of $\sigma(T)$. That λ_0 is a reducing eigenvalue now follows from Theorem 4 and Proposition 4. \square

6. Comment. Using the terminology of [1] and [2] we have shown that if $T \in \theta$, then T is reduction-normaloid, reduction-spectraloid, spectraloid, isoloid, and reduction-isoloid.

REFERENCES

- 1. S. K. Berberian, Some conditions on an operator implying normality, Math. Ann. 184 (1969/70), 188-192. MR 41 #862.
- 2. ____, Some conditions on an operator implying normality. II, Proc. Amer. Math. Soc. 26 (1970), 277-281. MR 42 #884.
- 3. Arlen Brown, On a class of operators, Proc. Amer. Math. Soc. 4 (1953), 723-728. MR 15, 538.
- **4.** Stephen L. Campbell, Linear operators for which T^*T and $T + T^*$ commute, Pacific J. Math. **61** (1975), 53-58.
- 5. ——, Operator-valued inner functions analytic on the closed disc. II, Pacific J. Math. 60 (1975), 37-50.
- 6. Mary R. Embry, A connection between commutativity and separation of spectra of operators, Acta. Sci. Math. (Szeged) 32 (1971), 235-237. MR 46 #2459.
- 7. Paul R. Halmos, A Hilbert space problem book, Van Nostrand, Princeton, N.J., 1967. MR 34 #8178.
- 8. Bernard B. Morrel, A decomposition for some operators, Indiana Univ. Math. J. 23 (1973/74), 497-511. MR 49 #7823.

DEPARTMENT OF MATHEMATICS, NORTH CAROLINA STATE UNIVERSITY, RALEIGH, NORTH CAROLINA 27607